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1 Introduction

This deliverable describes the view of the QUASIMODO project on model process improvement,
and the lessons we learned concerning the modelling processby doing the QUASIMODO case
studies.

Eykhoff [5] defined amathematical modelas a “representation of the essential aspects of
an existing system (or a system to be constructed) which presents knowledge of that system in
usable form”. Mathematical models can take many forms, including dynamical systems, statis-
tical systems or differential equations. Within QUASIMODO, we study certain specific types of
discrete event dynamical systems, namely timed, probabilistic and priced automata.

During the last two decades, research on timed, probabilistic and priced automata focussed on
theory and algorithms for efficient exploration of large state-spaces. This research has been quite
successful, and by now model-based verification technologyhas reached the maturity in which
it can be (and has been) applied to many non-trivial embeddedsystems applications. However,
as pointed out by [3], “current research seems to take the construction of verification models
more or less for granted, although their development typically requires a coordinated integration
of the experience, intuition and creativity of verificationand domain experts. There is a great
need for systematic methods for the construction of verification models to move on, and leave
the current stage that can be characterized as that ofmodel hacking. The ad-hoc construction of
verification models obscures the relationship between models and the systems that they represent,
and undermines the reliability and relevance of the verification results that are obtained.” Another
reason why we need to pay more attention to the construction of models is that this is an excellent
way to find more bugs. Our experience is that one finds more bugsduring the careful construction
of models than during the subsequent model checking or testing phase. In a case study where
we applied Uppaal to model and analyze the Zeroconf protocol[2], we found six places where
RFC 3827 [4] is incomplete/unclear. All of these six mistakes/ambiguities were found during the
modeling phase. In the QUASIMODO Chess case study, we spend several months to analyze a
Uppaal model of the gMAC clock synchronization algorithm but did not find any flaw [6]. Only
after we decided to invest in a more accurate modeling of the algorithm, we quickly discovered
a flaw in the current implementation [8].

In the next section we identify seven criteria which we thinka good model should satisfy.
We think that systematically checking and documenting these criteria will help to structure the
modeling process, and will lead to better models. Section 3 discusses in more detail some of
the QUASIMODO case studies and the lessons we learned from them concerning the modelling
process.
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2 What is a Good Model?

To some extent, building good models is an art. Dijkstra’s motto “Beauty is our business” applies
to models as well as to programs. Nevertheless, we can state seven criteria for good models.
These criteria are in some sense obvious, and any person withexperience in modelling will often
try to adhere to them. But surprisingly our list of criteria has - to the best of our knowledge -
not been described elsewhere in the literature, although most of them occur in a technical report
of Mader, Wupper and Boon [7].1 Often, the criteria are hard to meet and typically several of
them are conflicting. In practice, a good model is often one which constitutes the best possible
compromise, given the current state-of-the-art of tools for modelling and analysis. But a truly
beautiful model meets all the criteria! We refer to [7] for further links to related work in the areas
of software engineering, requirements analysis, and design.

1. A good model has a clearly specifiedobject of modelling, that is, it is clear what thing
the model describes. The object of modelling can be (a part of) an existing artefact or
physical system, but it may also be a document that informally specifies a system or class
of systems (for instance a protocol standard), and it may even be a collection of ideas of a
design team about a system they construct, expressed orallyand/or by some drawings on a
whiteboard.

2. A good model has a clearly specifiedpurpose and (ideally) contributes to the realiza-
tion of that purpose. Possible purposes include: communication between stake holders,
verification of specific properties (safety, liveness, timing,..), analysis and design space ex-
ploration, code generation, and test generation. A model can be descriptive or prescriptive.
If a model has to serve several distinct purposes then often it is better to construct multiple
models rather than one.

3. A good model istraceable: each structural element of a model either (1) corresponds to
an aspect of the object of modelling, or (2) encodes some implicit domain knowledge, or
(3) encodes some additional assumption. Additional assumptions are for instance required
when a protocol standard is incomplete (e.g., it does not specify how to handle certain
events in certain cases). Links between the structural elements of the model and the aspects
of the object of modelling should be clearly documented. A distinction must always be
made between properties of (a component of) a model and assumptions about the behavior
of its environment.

4. A good model istruthful : relevant properties of the model should also carry over to (hold
for) the object of modelling. Typically, for each (relevant) behavior of the object of mod-
elling there should be a corresponding behavior of the model, and/or for each behavior of
the model there should be a corresponding behavior of the artefact. In the construction of
models often idealizations or simplifications are necessary in order to allow for the use of a
certain modeling formalism or in order to be able to analyze the model. In these cases, the

1We see this as a clear indication of the lack of interest for the methodology of modeling in our field.
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model may not be entirely truthful. The modeller should always be explicit about such ide-
alizations/simplifications, and have an argument why the properties of the idealized model
still say something about the artefact. In the case of quantitative models this argument will
typically involve some error margin. In the case of nondeterministic models it frequently
occurs that a model “overapproximates” reality, and that certain behaviors that are possible
in the model are not possible for the artefact.

5. A good model issimple (but not too simple). Occam’s razor is a principle particularly
relevant to modelling: among models with roughly equal predictive power, the simplest
one is the most desirable. Hence, the number of states and state variables should be as
small as possible, and the level of atomicity of transitionsshould be as coarse grained
as possible (but not coarser), i.e., the number of transitions should be minimal given the
intended use of the model. Preferably, things should be written only once, and one should
avoid ugly encodings. Preferably, the model uses stable, well-defined and well-understood
concepts and semantics.

6. A good model isextensible and reusable, that is, it has been designed to evolve and be
used beyond its original purpose. Typically, if one defines models in a modular and para-
metric way this allows for dimensioning, future extensionsand modifications, especially
if modules have well-defined interfaces. Ideally, a model should not just describe the spe-
cific system at hand: by appropriate instantiation and dimensioning it should be possible
to model a whole class of similar systems.

7. A good model has been designed and encoded forinteroperability and sharing of se-
mantics. Model-driven development of an embedded system typically leads to a plethora
of models, all presenting different views on and abstractions of the system. If a model
is not somehow linked to other models, its usefulness will belimited. Ideally therefore,
the relationships between all models should be properly defined, for instance via formal
refinement relations.

Clearly, there are many relationships and dependencies between the criteria. If a model is trace-
ble, that is, links between the structural elements of the model and the aspects of the object of
modelling are clearly documented, then chances increase that the model will be thrutful. Also,
if a model has been set up in a modular way, then one may apply a divide-and-conquer strategy
both for establishing truthfulness of the model and for analysis. Etc, etc.

We think that the above criteria may help engineers to construct good models: just by sys-
tematically checking and documenting that all criteria aremet, and by understanding and docu-
menting the various tradeoffs during the modeling phase, the quality of models will significantly
increase. We also think that our criteria may help to define a roadmap for research: our cur-
rent tools and techniques often simply do not allow engineers to build good models (e.g., due
to state space explosion a verification purpose cannot be achieved, the syntax is not sufficiently
expressive to allow for simple models, and it is not possibleto relate models).
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3 Case Studies

Within the QUASIMODO project, we paid special attention to the modelling process in a number
of case studies, that we will discuss below.

3.1 Zeroconf Case Study

Participants Jasper Berendsen and Frits Vaandrager (RU), together with Biniam Gebremichael
and Miaomiao Zhang.

Results The model checker Uppaal is used to formally model and analyze parts of Zeroconf,
a protocol for dynamic configuration of IPv4 link-local addresses that has been defined in RFC
3927 of the IETF. Our goal has been to construct a model that (a) is easy to understand by
engineers, (b) comes as close as possible to the informal text (for each transition in the model
there should be a corresponding piece of text in the RFC), and (c) may serve as a basis for formal
verification. Our modeling efforts revealed several errors(or at least ambiguities) in the RFC that
no one else spotted before. We present two proofs of the mutual exclusion property for Zeroconf
(for an arbitrary number of hosts and IP addresses): a manual, operational proof, and a proof that
combines model checking with the application of a new abstraction relation that is compositional
with respect to committed locations. The model checking problem has been solved using Uppaal
and the abstractions have been checked by hand. [2]

Lessons learned Within this case study, we looked specifically at the issues of traceability and
faithfullness of the model. The most important lesson that we learned is that this pays off: six
flaws/ambiguities were discovered that were overlooked by the protocol designers who wrote the
RFC, and by us in our earlier modelling efforts.

If one constructs a model that is traceable and faithful, then often it will be too detailled for
direct verification using a model checker. We deviced a compositional abstraction technique for
transforming the original model in a more abstract tractable model. We proved correctness of the
abstraction by hand. Clearly, there is a great need for mechnanized support of these abstractions
in Uppaal. Currently, Uppaal also lacks a clear notion of component/module.

3.2 Chess Case Study

Participants Faranak Heidarian, Frits Vaandrager, Mathijs Schuts, and Feng Zhu (RU)

Results We present a detailled timed automata model of the clock synchronization algorithm
that is currently being used in a wireless sensor network (WSN) that has been developed by the
Dutch company Chess. Using the Uppaal model checker, we establish that in certain cases a
static, fully synchronized network may eventually become unsynchronized if the current algo-
rithm is used, even in a setting with infenitesimal clock drifts. [8]

6
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Lessons learned Model checking projects are often carried out a posteriori:the artefact exists
and has been documented in some manual of protocol standard.An advantage of such projects is
that the object of modelling is clear. A disadvantage may be that the potential impact of the work
is limited. The Chess case study is an example of a situation inwhich timed automata technology
is applied during the design of a new system, and may actuallyimpact this design. In such case
studies, the object of modelling (a prototype, or just ideasof the engineers) is a moving target,
which changes every week or sometimes every day. In order to keep up with the design team,
it is essential to have frequent meetings between the modeler and the designers. Preferably, the
modeler should be part of the design team and work at the same location. Our mistake was that
we were too late in realizing this. As a consequence, our firstUppaal model of the protocol [6]
was not faithful. Interestingly, since the actual implementation may become unsynchronized,
the solution proposed in [6] may be of practical interest (although certainly some changes are
required).

3.3 Oće case study

Participants Georgeta Igna, Frits Vaandrager, Israa AlAttili, Fred Houben, Steffen Michels,
Feng Zhu (RU), Jacob Illum and Kim Larsen (AAU)

Results The data path of a printer/copier encompasses the complete path of the image data (the
bit stream) from source (for example the network) to target (the imaging unit). In order to reach
Océ’s objective of genuine system adaptability, also the datapath has to be adaptive because its
properties heavily influence the image quality of the end product as well as system behavior as-
pects that have an eminent effect on usability. At run-time changes in the environment (or in the
observed image quality, using a feedback mechanism) may forinstance require the use of differ-
ent algorithms in the data path, deadlines for completion ofcomputations may change, new jobs
may suddenly arrive, and resource availability may change.To realize this type of behavior in a
predictable way is a major challenge. Currently it is alreadyimpossible to quickly evaluate cost,
energy, performance aspects of various data path implementation solutions at design-time. This
does not only hold for changing, adaptive functionality (steered by load, content, print quality),
but even for a given fixed functionality. Partner ESI/RU is involved in a project (named Octopus)
with Océ in which Uppaal is used to make detailled models of the datapath of printer/copiers and
to analyze their behavior. Due to their complexity, these models provide an excellent challenge
for the new analysis and synthesis techniques that are beingdeveloped within Quasimodo.

Georgeta Igna spent a lot of time at Océ to construct - in close interaction with the designers
- detailled Uppaal models of a new machine that is currently being developed, and to use these
models for design space exploration. A publication describing these results is currently being
reviewed at Oće and will be submitted shortly.

In [1], we applied Uppaal Tiga to automatically compute adaptive scheduling strategies for a
simplified version of the model. As far as we know, this is the first application of timed automata
technology to an industrial scheduling problem with uncertainty in job arrivals.
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Lessons learned In principle, Uppaal is able to faithfully model the datapath of realistic printer
designs. State space explosion is clearly an issue, but can be kept under control by also including
(some of) the scheduling rules used by Océ within the model. One technical issue that we faced is
that although essentially the behavior of the model is fullydeterministic when all the scheduling
rules are added, the resulting Uppaal model is not (and suffers from state space explosion) due
to interleavings of internal actions of the various components. We resolved this by using the
channel and process priorities from Uppaal, but a better solution would be to extend Uppaal with
support for confluence detection and/or partial order reduction.

A lesson we learned is that it is extremely difficult to maintain correctness of the model in a
setting where the object of modelling has such a high complexity. There is not a single document
describing the design. In fact there is not a single person who is able to answer all the questions
that need to be answered in order to obtain a good model: the knowledge is spread over a large
design team. For the engineers at Océ it is difficult to understand the intricacies of the Uppaal
model. The syntax of Uppaal is not sufficiently expressive todescribe the design in such a way
that a small change in the design corresponds to a small change in the model. Due to these
difficulties, we decided to develop a high level language fordescribing the designs, together with
a translation to Uppaal: one the one hand this will make it much easier to communicate with the
engineers, and on the other hand it will reduce the chances ofintroducing errors in the Uppaal
model.

3.4 Scooter case study

Participants Jiansheng Xing (UT)

Results Chessway has designed and realized successfully its first generation of a self balancing
scooter. However, there still exist many problems to be solved for improving the scooter. For
the next generation, the most important challenges can be classified into two categories: 1. the
design should include formally defined system states such that safety measurement and power
management is easier to be implemented. 2. Verification of the proposed solution during design
phase and generation of code and test cases from the verified design. Confronted with such
challenges, formal method are a promising approach to come to a correct solution. UPPAAL,
being a popular model checking tool, is our first choice.

Using UPPAAL, we have formally defined system states such as Charging, PowerDown,
Hibernate, Checking, and Drive. Also, we have introduced safety signals such as warning and
unsafe into this model. With these states and signals, we canverify that the system satisfy some
safety properties or functional specifications. For example, we know that the battery will not be
over-consumed; if we know the energy consumption, the remaining running time of the scooter
can be calculated. Next, we anticipate power management policy can be included such that
performance of different policies can be analyzed and compared. And at the same time, we are
working on the generation of code and test cases from the verified model.

In the modeling of scooter system, some techniques have beenintroduced to improve or sim-
ply the modeling process. The interaction of scooter with user is abstracted and implemented as

8
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a timed automaton. This abstraction is very powerful as it can model all kinds of inputs from
user and it greatly simplifies the modeling process. This technique applies to simple interac-
tions where the user has few statuses and it can be seen as a test case generation engine for the
model itself. Unsafe timed automaton introduces a technique for nondeterministic triggering of
failure signals which makes the modeling more succinct. This technique can be enhanced by
introducing an urgent channel which guarantees that the triggering of signals will occur. For
the implementation of distributed control, the channels and related status variables are declared
parameters of the scooter model, and then we can easily specify two or more distributed scooter
controllers using this model. Obviously, one controller setting is much simpler to be created and
then easily extended to more complicated distributed applications. This template feature is sup-
ported by UPPAAL and is fully utilized here for the simplification of the modeling process. With
this UPPAAL model, we can analyze the timing performance of battery usage by labeling all
non-energy-consuming status with urgent. This abstraction can also be generalized such that we
can analyze a specific performance measure (energy usage) byestablishing a linear relationship
with time. With this technique, we can analyze a specific measure with a simple model rather
than a more complicated model (for instance a UPPAAL Cora model).

Lessons Learned This case study nicely illustrates the power of nondeterminism in modeling.
Nondeterminism (as supported by Uppaal) allows one to definesimple, abstract models of sys-
tems. The behavior of the system is in a sense “overapproximated”, but this is ok as long as the
purpose of the model is to establish safety properties.

4 Future Work

Our plan is to our seven criteria in detail for each of the casestudies that will be presented in the
QUASIMODO handbook.
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