
ICT-FP7-STREP-214755 /
QUASIMODO
January 9, 2010
Page 1 of 10

Project no.: ICT-FP7-STREP-214755

Project full title: Quantitative System Properties in Model-Driven Design

Project Acronym: QUASIMODO

Deliverable no.: D3.2

Title of Deliverable: Tool for implementability checking
Contractual Date of Delivery to the CEC: Month 18
Actual Date of Delivery to the CEC: Month 18 (february 1, 2009)
Organisation name of lead contractor for this deliverable: Université Libre de Bruxelles (CFV)
Author(s): Jean-François Raskin
Participants(s): P04 RWTH, CNRS, CFV, SU, AAU
Work package contributing to the deliverable: WP 3
Nature: R
Version: 1.0
Total number of pages: 10
Start date of project: 1 Jan. 2008 Duration: 36 month

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2X013)
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specif ed by the consortium (including the Commission Services)
CO Conf dential, only for members of the consortium (including the Commission Services)

Abstract:

In this deliverable, we summarize the progress made in the Quasimodo project on theory, algorithms and
tools for robust analysis of timed automata. We f rst recall the context and main challenges related to
notions of robustness for timed automata. We review the recent works done on the theory necessary to
build eff cient tools. We describe the results that have been obtained towards eff cient algorithms based on
zones, and f nally, we report on the status of their implementation in the tool UPPAAL.

Keyword list: Robustness of timed automata, implementability of timed automata.

ICT-FP7-STREP-214755 / QUASIMODO Page 2 of 10 Public

Contents

Bibliography 3
Abbreviations 3

1 Introduction 5

2 Foundations of robustness and implementability 6
2.1 Region based safety checking . 6

2.1.1 Participants . 6
2.1.2 Contribution . 7

2.2 Robustness analysis under f nite life-time or resynchronization 7
2.2.1 Participants . 7
2.2.2 Contribution . 7

2.3 Probabilistic approach to robustness . 8
2.3.1 Participants . 8
2.3.2 Contribution . 8

3 Zone-based algorithm for robust safety of timed automata 8
3.1 Participants . 8
3.2 Contribution . 8

2

ICT-FP7-STREP-214755 / QUASIMODO Page 3 of 10 Public

Bibliography
[1] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A Comparison of Control

Problems for Timed and Hybrid Systems. In HSCC’02, Lecture Notes in Computer Science
2289, pp. 134–148, Springer Verlag, 2002.

[2] Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Marcus GröSer.
Almost-sure model checking of inf nite paths in one-clock timed automata. In Proceedings
of the 23rd Annual IEEE Symposium on Logic in Computer Science (LICS’08), pages 217-
226, Pittsburgh, PA, USA, June 2008. IEEE Computer Society Press.

[3] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Quantitative
model-checking of one-clock timed automata under probabilistic semantics. In Proceed-
ings of the 5th International Conference on Quantitative Evaluation of Systems (QEST’08),
pages 55-64, Saint Malo, France, September 2008. IEEE Computer Society Press.

[4] Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust analysis of timed au-
tomata via channel machines. In Proceedings of the 11th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS’08), volume 4962
of Lecture Notes in Computer Science, pages 157-171, Budapest, Hungary, March-April
2008. Springer.

[5] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robust safety
of timed automata. Formal Methods in System Design, 33(1-3):45-84, December 2008.

[6] Alexandre David, Piotr Kordy, Rom Langerak, Kim Larsen, Jan Willem Polderman: Prac-
tical Robustness Analysis of Timed Automata. November 2008. Submitted.

[7] Mani Swaminathan, Martin Fränzle, and Joost-Pieter Katoen. The Surprising Robustness of
(Closed) Timed Automata against Clock-Drift. In Proceedings of the 5th IFIP International
Conference on Theoretical Computer Science (IFIP TCS), pages 537-553, Milano, Italy,
September 2008. Springer.

Abbreviations
AAU: Aalborg University, DK

CFV: Centre Fèdèrè en Vèrif cation, B

CNRS: National Center for Scientif c Research, FR

ESI: Embedded Systems Institute, NL

ESI/RU: Radboud University Nijmegen, NL

3

ICT-FP7-STREP-214755 / QUASIMODO Page 4 of 10 Public

RWTH: RWTH Aachen University, D

SU: Saarland University, D

4

ICT-FP7-STREP-214755 / QUASIMODO Page 5 of 10 Public

1 Introduction
Timed and hybrid systems are dynamical systems with both discrete and continuous compo-
nents. A paradigmatic example of a hybrid system is a digital embedded control program for an
analog plant environment, like a furnace or an airplane: the controller state moves discretely be-
tween control modes, and in each control mode, the plant state evolves continuously according to
physical laws. A natural model for hybrid systems is the hybrid automaton, which represents dis-
crete components using f nite-state machines and continuous components using real-numbered
variables which evolution is governed by differential equations or differential inclusions. Sev-
eral verif cation and control problems have been studied for hybrid automata or interesting sub-
classes. Tools like HYTECH have proven useful to analyze high-level descriptions of embedded
controllers in continuous environments.

When a high level description of a controller has been proven correct it would be valuable
to ensure that an implementation of that design can be obtained in a systematic way in order to
ensure the conservation of correctness. This is often called program ref nement: given a high-
level description P1 of a program, ref ne that description into another description P2 such that
the “important” properties of P1 are maintained. Usually, P2 is obtained from P1 by reducing
nondeterminism. To reason about the correctness of P2 w.r.t. P1, we often use a notion of
simulation (due to Milner) which is powerful enough to ensure conservation of LTL properties
for example.

In this task, we have studied how this elegant schema can be adapted in the context of real-
time embedded controllers. To reach this goal, there are several diff culties to overcome. First,
the notion of time used by hybrid automata is based on a dense set of values (usually the real
numbers). This is unarguably an interesting notion of time at the modeling level but when imple-
mented, a digital controller manipulates timers that are digital clocks. Digital clocks have f nite
precision and take their values in a discrete domain. As a consequence, any control strategy that
requires clocks with inf nite precision can not be implemented. Second, hybrid automata can be
called “instantaneous devices” in that they are capable of instantaneously react to time-outs or
incoming events by taking discrete transitions without any delay. Again, while this is a conve-
nient way to see reactivity and synchronization at the modeling level, any control strategy that
relies for its correctness on that instantaneity can not be implemented by any physical device no
matter how fast it is. Those problems are known and have already attracted some attention from
our research community. For example, it is well-known that timed automata may describe con-
trollers that control their environment by playing a so called zeno strategy, that is, by taking an
inf nite number of actions in a f nite amount of time. This is widely considered as unacceptable
even by authors making the synchrony hypothesis. But even if we prove our controller model
non-zeno, that does not mean that it can be implemented. In fact, it is shown in [1] that there
are (very simple) timed automata that respect a syntactic criterion that ensures nonzenoness but
requiring faster and faster reactions, say at times 0, 1

2
, 1, 11

4
, 2, 21

8
, 3, 3 1

16
, So, timed automata

may model control strategies that can not be implemented because the control strategy does not
maintain a minimal bound between two control actions. A direct consequence is that we can not
hope to def ne for the entire class of timed automata a notion of ref nement such that if a model
of a real-time controller has been proven correct then it can be systematically implemented in a

5

ICT-FP7-STREP-214755 / QUASIMODO Page 6 of 10 Public

way that preserves its correctness.
The inf nite precision and instantaneity characteristics of the traditional semantics given to

timed automata is very closely related to the synchrony hypothesisthat is commonly adopted in
the community of synchronous languages. Roughly speaking, the synchrony hypothesis can be
stated as follows: “the program reacts to inputs of the environment by emitting outputs instan-
taneously”. The rationale behind the synchrony hypothesis is that the speed at which a digital
controller reacts is usually so high w.r.t. the speed of the environment that the reaction time of
the controller can be neglected and considered as nil. This hypothesis greatly simplifiesthe work
of the designer of an embedded controller: he/she does not have to take into account the perfor-
mances of the platform on which the system will be implemented. We agree with this view at the
modeling level. But as any hypothesis, the synchrony hypothesis should be validatednot only
by informal arguments but formally if we want to transfer correctness properties from models to
implementations. In previous works, we have shown how this can be done formallyand elegantly
using a semantics called the Almost ASAP semantics (AASAP-semantics).

The AASAP-semantics is a parametric semantics that leaves as a parameter the reaction time
of the controller. This semantics relaxes the synchrony hypothesis in that it does not impose
the controller to react instantaneously but imposes on the controller to react within ∆ time units
when a synchronization or a control action has to take place (is urgent). The designer acts as
if the synchrony hypothesis was true, i.e. he/she models the environment and the controller
strategy without referring to the reaction delay. This reaction delay is taken into account during
the verification phase: we compute the largest ∆ for which the controller is still receptive w.r.t.
to the environment in which it will be embedded and for which the controller is still correct w.r.t.
to the properties that it has to enforce (to avoid the environment to enter bad states for example).

During 2008 and 2009, the teams of our consortium have worked on foundations necessary
to build algorithms and tools for robust verif cation of timed automata 1. The results of this
foundational work have been implemented into the tool UPPAAL. Those results are detailed in
the next sections.

2 Foundations of robustness and implementability

2.1 Region based safety checking
2.1.1 Participants

• Martin De Wulf and Jean-François Raskin, CFV, Université Libre de Bruxelles, Belgium

• Laurent Doyen, CNRS/LSV, Cachan, France

• Nicolas Markey, CNRS/LSV, Cachan, France
1We recall here the main results on the theory underlying robust analysis of timed automata. Part of those results

are described in more details into delevirable D3.1 of the Quasimodo project.

6

ICT-FP7-STREP-214755 / QUASIMODO Page 7 of 10 Public

2.1.2 Contribution

In this paper, we tackle the basic problem of reachability under the relaxed semantics. We solve
the safety verif cation problem for this robust semantics: given a timed automaton and a set of
bad states, our algorithm decides if there exist positive values for the parameters ∆ and ǫ such
that the timed automaton never enters the bad states under the relaxed semantics. We also prove
that our algorithm requires polynomial space, i.e., it has the same theoretical complexity as safety
verif cation algorithms in the classical semantics. This has been published in [5].

2.2 Robustness analysis under f nite life-time or resynchronization
2.2.1 Participants

• Mani Swaminathan and Martin Fränzle, Uni. Oldenburg, Germany

• Joost-Pieter Katoen, RWTH, Aachen, Germany

2.2.2 Contribution

The unsafe states that become reachable with drifting clocks (but which are unreachable with
perfect clocks) are obtained by iterating unboundedly many times through the (progress) cycles
of the TA, assuming an inf nite system’s life-time. Moreover, unbounded relative drift between
clocks is considred which does not take into account the regular resynchronization of clocks that
is performed in many implementations of real-time systems.

We address these two issues, with two main contributions:

1. Under closed guards, invariants, and targets, the standard zone-based FRA of TA per-
formed by tools such as UPPAAL is shown to be exact for robust safety for TA with an
arbitrary, but finitelife-time. That is, for any i, there is εi > 0 such that Reachεi

i cal G = ∅

where Reachεi

i is the reachable state space after i iterations under maximum perturbation εi

of the clocks. Robust safety thus does not imply the existence of a homogeneous ε > 0 that
is independent of the number of iterations, but avoids the target state G by some strictly
positive value of the perturbation for any arbitrary, but finitenumber of iterations.

2. We consider clock-drifts with he possibility if regular clock resynchronization. This results
in a boundedrelative clock-drift. Under the assumption of closed guards, invariants, and
targets, we show that the standard zone-based FRA of TA (like in UPPAAL) is exact for
robust safety of TA with regular clock resynchronization. In this case, a certif cation of
robust safety imposes no restriction on the life-time of the system—it implies avoidance of
the (closed) target by all 0 < ε < 1 (where the ε now parameterizes the maximum relative
bounded clock-drift subject to periodic resynchronization) independent of the number of
iterations.

This work is published as [7].

7

ICT-FP7-STREP-214755 / QUASIMODO Page 8 of 10 Public

2.3 Probabilistic approach to robustness
2.3.1 Participants

• Christel Baier and Marcus GröSer, Uni. Dresden, Germany

• Nathalie Bertrand, IRISA, Rennes, France

• Patricia Bouyer and Nicolas Markey, CNRS/LSV, Cachan, France

• Thomas Brihaye, CFV, Univ. Mons-Hainaut, Belgium

2.3.2 Contribution

The mathematical aspect of real-time model-checking has another disavantage: it detects every
single failure, even if it is highly unlikely to occur. While this exhaustivity is often seen as a
strength of this method, it might be desirable to sometimes ignore those unlikely paths. To cope
with this problem, we have def ned a probabilistic semantics for timed automata. Roughly, in a
given conf guration, a transition that is f rable only at a f nite number of single dates will have
zero probability if some other transition, from the same conf guration, is allowed on (at least) a
non-empty interval of dates.

We proposed an algorithm for almost-surely model-checking ω-regular properties ; we also
proposed a method to compute (or approximate) the probability of an ω-regular property under
that semantics. These two results have been published in [2, 3].

3 Zone-based algorithm for robust safety of timed automata

3.1 Participants
• Alexandre David, Aalborg University, AAU

• Piotr Kordy, Twente University, ESI

• Rom Langerak, Twente University, ESI

• Kim G. Larsen, Aalborg University, AAU

• Jan Willem Polderman, Aalborg University, ESI

3.2 Contribution
We propose a practical algorithm for the analysis of robustness of timed automata, that is, the
correctness of the model in the presence of small drifts on the clocks. The algorithm is an
extension of the region based algorithm of Puri and uses the idea of stable zone of Daws and
Kordy. The algorithm is a depth f rst search based on on-the-f y reachability using zones.

8

ICT-FP7-STREP-214755 / QUASIMODO Page 9 of 10 Public

Puri proposes extended reachability concept. Extended reachability is set of states that are
reachable if we allow any clock drift - even inf nitely small clock drift. He shows that this
problem is decidable by introducing algorithm to calculate extended reachability. That algorithm
is based on detecting strongly connected components in the region graph of a timed automaton.
Since it is region based it is not effective in practice for complexity reasons. The idea behind
algorithm is simple. Whenever we touch a region that is on some strongly connected component
we add it to the set of reachable set of states. The algorithm is correct under the assumptions that
all clocks are bounded and all cycles are progress cycles. Progress cycle is a cycle in the region
graph where all clocks are reset.

The zone based algorithm is based on the notion of a stable zone. Stable zone is a set of states
that associated with a cyclic sequence of edges. Given sequence of edges, stable zone associated
with that sequence is the largest set of states such that starting from any point in the stable
zone we can always reach some other point in stable zone using both forward and backward
reachability along associated sequence of edges. The important property of stable zone is that if
we can reach some point in stable zone, we can reach whole stable zone in extended semantics.
It is possible to calculate stable zone using pre and post operators, which are currently used in
model checking tools (e. g. UPPAAL) for timed automata.

If we want to use stable zone instead of strongly connected components, we can have po-
tentially inf nite number of stable zones as there are inf nite number of cyclic paths of edges.
Considering only simple cyclic paths is not enough as two cyclic paths may have empty stable
zones but the combination has a non-empty stable zone.

The problem can be divided into two parts:

• case where we allow only progress cycles

• case where we allow any type of cycle in timed automaton

For the case where we allow only progress cycles, it is possible to prove the following theo-
rem:

Theorem 1 Let there be progress (all clocks are reset) cyclic sequence of edgesσ1, σ2 . . . σn

starting in common location. Letσall be any combination ofσ1 . . . σn. If σi (for some0 < i ≤ n)
contained inσall has non empty stable zoneWσi

, then stable zoneWσall
is reachable fromWσi

.

This theorem states that if we have a cyclic sequence of edges σi with non-empty stable zone,
then from that stable zone we can reach any stable zone that has complex sequence of edges
containing σi. This allows to stop exploring a cycle as soon as it has non empty stable zone.
On the other hand if sequence of edges does not contain stable zone then it is not possible to
take that sequences of edges inif tely many times. Based on Theorem 1 we created symbolic
algorithm that calculates extended reachability. In the algorithm we detect cyclic paths on-the-
f y, storing on a stack the sequence of states that we have visited already. Similar mechanism
is used in algorithm for liveness checking. If we detect that we visit the same state we check if
associated stable zone exists and if it does we add it to the reachable set of states. Depending
it there exist a stable zone we continue exploring from current state or not. If we choose to
continue we are guaranteed to f nish because stable zone does not exists so we will be not able to

9

ICT-FP7-STREP-214755 / QUASIMODO Page 10 of 10 Public

cycle inf nitely often. The algorithm has been implemented in the experimental tool based on the
development version of UPPAAL. The tool can be downloaded from the following web address:
http://www.cs.aau.dk/∼adavid/uppaal-dev.zip.

For the case where we allow any type of cycle in timed automaton the algorithm as it is does
not work properly.

10

