ICT-FP7-STREP-214755/
Quasknodo QUASIMODO

June 1, 2011

=  am Page 1 of 18

——1 ] ] | e ——

Project no.: ICT-FP7-STREP-214755

Project full title: Quantitative System Properties in Model-Driven Design
Project Acronym: QUASIMODO
Deliverable no.: D4.3

Title of Deliverable:  Test selection and coverage

Contractual Date of Delivery to the CEC: Month 30

Actual Date of Delivery to the CEC: June 1, 2011

Organisation name of lead contractor for this deliverable: ESI/UT

Author(s): Henrik Bohnenkamp

Mark Timmer, Arne Skou

Participants(s): P01 AAU, P02 ESI/UT, P04 RWTH
Work package contributing to the deliverable: WP 4

Nature: R

Version: 1.0

Total number of pages: 18

Start date of project: 1 Jan. 2008  Duration: 36 month

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)
Dissemination Level

PU Public

Abstract:

This deliverable reports on the results in the area of test selection and coverage for quantitive system,
produced in the QUASIMODO project.

Keyword list: test selection, coverage.



ICT-FP7-STREP-214755 / QUASIMODO Page 2 of 18 Public

Contents

Abbreviations 3
1 Introduction 4
2 A Conformance Testing Relation for Symbolic Timed Automata 6
3 Model-based testing with UPPAAL 8
4 Interpreting a Successful Testing Process: Risk and Actual Coverage 13
5 Industrial validation of test coverage quality 15

Bibliography 17



ICT-FP7-STREP-214755 / QUASIMODO Page 3 of 18

Public

Abbreviations

AAU: Aalborg University, DK (POT)
ESI: Embedded Systems Institute, NL (P02)
ESI/UT: University of Twente, Enschede, NL (under the auspices of P02)

RWTH: RWTH Aachen University, D (P04)



ICT-FP7-STREP-214755 / QUASIMODO Page 4 of 18 Public

1 Introduction

Software becomes more and more complex, making thorough testing an indispensable part of the
development process. The U.S. National Institute of Standards and Technology has assessed that
software faults cost the American economy almost sixty billion dollars annually [18]. More than
a third of these costs could be eliminated if testing occurred earlier in the development process.

An important fact about testing is that it is inherently incomplete, since testing everything
would require infinitely many input scenarios. On the other hand, passing a well-designed test
suite does increase the confidence in the correctness of the tested product. Therefore, it is im-
portant to select test cases in the most efficient and effective way beforehand, and to assess the
quality of a test process after it has taken place.

In industry, several methods are in use to select which test cases to include in a test suite.
Well-known are syntactic coverage measures such a statement coverage and condition cover-
age [16]. They base the quality of a test suite on the percentage of statements or conditions of
the implementation that are executed during testing, and steer the construction of a test suite in
the direction that obtains a coverage measure of 100%.

A large amount of the current research on testing focusses on the area of model-based testing
(MBT): using a model of the specification to automatically generate, execute and evaluate test
cases [11]. This technique makes it possible to perform many more tests than would ever be
possible manually. However, MBT, and in particular test selection when applying MBT, still
faces several problems both in theory and in practice. The following issues are addressed in the
work described by this document and performed in the context of the Quasimodo project.

Under what circumstances should a system fail or pass a test case? When designing and
selecting test cases, it should be decided when the system is considered to respond correctly to
that test case. For this purpose, conformance relations have been introduced. In the context of
model-based testing an important conformance relation is ioco [20] (input-output conformance).
It allows systems to handle unexpected input, but does not allow unexpected outputs (neither
does it allow the unexpected absence of outputs, called guiescence).

Conformance relations were also already defined for timed systems [14] and for symbolic
systems [12], but not yet for a combination of both. This gap has now been filled by [4], where
a conformance relations for Symbolic Timed Automata (a combination of Timed Automata and
Symbolic Transition Systems) is introduced. This work is discussed in Section 2.

How to derive timed test cases for a complex system? The bigger the system, the more
difficult it is to design an effective and efficient test suite. Ideally, these tests are generated auto-
matically from a model, executed against an implementation-under-test and evaluated according
to some conformance relation. However, it is not always easy to obtain a test, especially not in a
setting with real time.

In Section 3 we discuss a UPPAAL-based tool for deriving test cases based on timed au-
tomata [2]. It allows the user to make a model in UPPAAL, and then generate a test suite with
complete edge coverage based on several test generation algorithms. Either the test suite is gen-



ICT-FP7-STREP-214755 / QUASIMODO Page 5 of 18 Public

erated based on a reachability question or an optimization strategy, by targeting single edges,
or just randomly (to support these techniques, two model transformations are performed). To
generate an actual executable test suite, the user can annotate the model to denote in what way
inputs have to be provided and observations have to be made.

How to interpret a successful testing process? Although it is impossible to exhaustively test
any non-trivial system, passing a well-designed test suite does increase the confidence in the cor-
rectness of the tested product. Therefore, it is important to assess the quality of a test suite. In the
past, two fundamental concepts have been put forward to evaluate test suite quality: (1) coverage
metrics determine which portion of the requirements and/or implementation-under-test has been
exercised by the test suite; (2) risk-based metrics assess the risk of putting the tested product into
operation. There are still, however, major issues regarding the usefulness of these concepts. A
new, quantitative approach to deal with these issues has been proposed in [3] and is discussed in
Section 4.

Still, the traditional coverage notions are also still used quite extensively in practice. Com-
panies assume that test suites with for instance a high percentage of statement coverage also per-
form well in the sense of finding most of the existing faults. The question, however, is whether
this assumption is indeed a valid one. Section 5 discusses an applied research project that inves-
tigated this question in the context of a Dutch software company.



ICT-FP7-STREP-214755 / QUASIMODO Page 6 of 18 Public

2 A Conformance Testing Relation for
Symbolic Timed Automata

Participants

e Henrik Bohnenkamp, RWTH Aachen University, D;
e Sabrina von Styp, RWTH Aachen University, D;

e Julien Schmaltz, Radboud University, NL.

Challenge

The well-known ioco testing framework [20] has been recently extended in two directions. First
of all, Timed Automata have been proposed as specification formalisms in several approaches
for testing real-time behaviours [14, 8, 10]. Different notions of conformance have been defined
on the basis of timed LTSs (TLTSSs), i.e., only on the semantic level. Second of all, Symbolic
Transition Systems (STSs) [12, 13] have been introduced to specify systems with input- and
output-data. STSs are LTS's extended with a notion of data and data-dependent control flow
based on first-order logic. The symbolic representation of data in ST'S's allows for infinite data
domains without facing the problems of infinite branching and infinite state spaces. For ST,
the implementation relation sioco has been developed, which is defined solely within the first-
order logic framework on S7'S level [13].

In this work we develop a combination of real-time and data. In particular, in [4] we take
first steps in the direction of specification-based testing for systems combining input/output data
with real-time aspects in a non-orthogonal way. This means that the input data can influence the
real-time behaviour. We introduce a conformance relation which takes data and real-time into
account.

Results

Our contribution is a new formalism — called Symbolic Timed Automata (S7'As) — for modelling
reactive real-time systems with data input and output. S7TAs are a straightforward combination
of STSs and TAs.

We defined a concrete operational semantics in terms of timed labelled transition systems,
and a symbolic trace semantics for this formalism. We proved that both semantics coincide. The
trace semantics is based on symbolic execution of the STAs. In the symbolic execution, time
delays are also treated symbolically as data. The semantics provides first-order formulae which
describe the conditions under which certain states in an S7A can be reached at what times.

Based on this information, a family of conformance relations stiocor, is defined, which ex-
presses conformance of an input-enabled implementation, given as an STA, with a specification,
also given as an STA. We show that stiocoz, coincides on the concrete semantical level with the
notion of tioco of Krichen and Tripakis [14].



ICT-FP7-STREP-214755 / QUASIMODO Page 7 of 18 Public

Perspective

The interaction between time and data is restricted to the influence that data inputs can have on
the timing behaviour of the considered STA. This was expressed by allowing location variables
to serve as bounds in clock constraints and invariants. More and different interactions between
time and data are imaginable, for example, by assigning clock valuations to location variables,
i.e., by keeping historical information about the occurrence time of events in the S7’A. In princi-
ple, this extension could also be encoded in the first-order logical framework. However, even for
the more restricted case considered in this paper, it is necessary to investigate first whether the
obtained formalism is not already too expressive to be useful for practical testing, in terms of de-
cidability of the forward reachability problem. A suitable subclass of first-order logic might have
to be identified to ensure this and to be able to apply the provided theory on practical applica-
tions. This would encompass the development of an algorithm for automatic test-case generation
and test-execution.



ICT-FP7-STREP-214755 / QUASIMODO Page 8 of 18 Public

3 Model-based testing with UPPAAL

Participants

e Kim Guldstrand Larsen, Aalborg University, DK;
e Jacob Illum Rasmussen, Aalborg University, DK;

e Arne Skou, Aalborg University, DK.

Challenge

This documents describes features and functionality of the UPPAAL-based testing tool for model-
based testing [2]. The aim of the tool is to take models created in UPPAAL and create a suite of
test cases that covers all transitions in the model (edge coverage). By using a special syntax
within UPPAAL, the test suite that is the output of the tool can take the format of a test script
in any desired language that can be used as input to test executions engines such as Selenium
(http://seleniumhg.org).

Results

The test generation algorithm is a combination of the normal UPPAAL search algorithm, the
random depth-first search algorithm, and the agent-based version of the UPPAAL CORA search
engine.

Below, we describe in turn the modeling features, the test generation algorithms and the
model transformation for test generation.

Modeling Features

Test scripts consist of a sequence of inputs to the system under test (SUT) interleaved with a
sequence of observations on the SUT as a results of the input stimuli. Inputs are given in terms
of synchronization channels in UPPAAL. In order to distinguish between channels indicating
inputs and other channels used internally in the model of the SUT, the test tools requires the
existence of a UPPAAL template called “User” (the name is case insensitive). Any channels used
as calling synchronizations (i.e., with an exclamation point) in the user template are interpreted
as test inputs to the SUT. An advantage of having a user template is that the user behavior can be
a complex model allowing, e.g., certain inputs only under certain circumstances. Obviously, the
channels used for inputs must be declared globally.

The least restrictive user model consists of a single state with a loop edge for each input
channel sending that input.

To have test scripts as an output of the test generation procedure, the model must contain
information about inputs and observations, and what the syntax of these is in the desired output
language. This is not a native feature of UPPAAL, but to allow the user to use the regular flavor



ICT-FP7-STREP-214755 / QUASIMODO Page 9 of 18 Public

of UPPAAL for test generation, the feature has been added by interpreting UPPAAL comments in
a special way. How this is done for inputs and observations is described below.

Inputs: If there is a channel used for input called for instance ‘key_press_x’, then a com-
ment can be placed in either the global declaration or in the local declaration of the user
template, with the following syntax: key_press_x => <some code here>. Then,
the text replaced for <some code here> will appear in the output test script whenever
the test dictates that the input ‘key_press_x’ should be given.

Observations: Observations come in two flavors: variables and locations. Each of these is
handled differently:

Variables: These are handled in a similar fashion to inputs, that is, using the syntax
<variable name> => <some code here>. However, there is a difference
in that variables, unlike inputs, takes a certain value. So, in the code associated with
the variable, the special syntax ‘$wval’ can be used, and will be substituted for the
current value of the variable when the observation should be made. Note that variable
observations occur only in the test script whenever the variable changes value and not
after each single input. An example of a variable definition could be something like
foo => check_var (' foo’, $val);

Locations: Whenever one of the templates in the SUT model changes location, any code
inserted in the comment field of that location is inserted into the test script. However,
since templates can be instantiated and thus occur in the SUT model with several
different names, the special syntax ‘Sinstance’ can be used within the code and
will be replaced by the actual name used for the instance of the template that has
changed location. Again, only locations that change as a result of the previous input
occur in the test script as an observation.

Any valid UPPAAL model using the above features can be used for automatic test generation
using the test tool.

Test Generation Algorithms

The test tool allows the user to utilize a number of different algorithms for test generation. Each
of these techniques is described below:

Query-based: The query-based technique is not per se a test generation algorithm. However, it
is nonetheless very useful for test case generation. This technique assumes that the user
provides as input a UPPAAL query file with a number of reachability queries. Then, for
each query, the test tool will generate a test case and these will be part of the final test suite.
This can be useful in at least the following situations:

e When the user knows that reaching a certain state will cover a great part of the model,
and thus help the tool limit the size of the final test suite.



ICT-FP7-STREP-214755 / QUASIMODO Page 10 of 18 Public

e When the test specification of the SUT specifies certain functional tests that must
exist. Often these can be translated into reachability queries and can then be (1)
automatically generated and (2) count towards the coverage of the model so that
the automatic tests do not cover transitions that have already been covered by the
functional tests.

Optimization: Optimization means generating test cases that individually cover as much of the
uncovered part of the model as possible. This is done by using the UPPAAL CORA opti-
mization engine. The model is then converted to a CORA model and special optimization
queries are executed. The decision of how much to cover with a single test case in this
fashion has to be weighed against the length of the test case. Often, longer test cases are
less useful, as debugging an error from a longer test case is harder than from a shorter test
case. The CORA engine used is the agent-based version, which does not guarantee optimal-
ity. This is needed, as generating a test case of a certain length that covers as much of the
model as possible can be an extremely hard problem to solve. Even much more complex
than optimization queries on the input model, since the annotations added to the model in
order to track coverage can add an explosion in the global state space. The optimization
algorithm is executed iteratively until it covers no new edges.

Random Depth: Random depth involves generating traces using the built-in random depth-first
search algorithm of UPPAAL. This technique is mostly useful in situations where opti-
mization queries are not performed and before single step test cases are generated, in order
to reduce the size of the final test suite. This technique requires no model transformation.
The random depth algorithm is executed iteratively until no new edges are covered.

Single Step: Single step is the ‘garbage collector’ of the test generation algorithms as it picks up
the pieces left behind by the other techniques. This technique is an iterative approach that
selects a random uncovered edge in the model and generates a reachability query designed
to cover that specific edge. If the query succeeds, the trace is added as a test case to the test
suite. If not, the edge is known not to be reachable and is added to the list of uncoverable
edges. Thus, single step is used as the final algorithm when multiple algorithms are used
in order to guarantee that the final test suite covers all reachable edges in the model. Since
single step chooses one edge at a time, this can result in a large number of test cases (worst
case one test for each edge).

This concludes the description of algorithms used by the testing tool. All the algorithms
perform edge coverage of the model, i.e., covering each edge in each template. Note that this
means that two different instances of the same template share coverage of the template and do
not define two individual sets of edges to cover.

Model Transformations

In order to use the input model for test generation, certain model transformation techniques need
to be applied depending on the test generation algorithm. The different transformations will be
described in more detail below.

10



ICT-FP7-STREP-214755 / QUASIMODO Page 11 of 18 Public

Using either random depth or query-based test generation requires no model transformations,
as neither needs to know which edges have already been covered. The model transformations
needed for single step and optimizations are as follows.

Single Step: To perform single step test case generation, an extra boolean variable is added to
the model with an initial value of ‘false’. Then, an assignment setting that variable to ‘true’
is added to the edge that needs to be covered. Finally, a reachability query is constructed
that checks when a state is reachable for which the boolean variable has value ‘true’.

Optimization: Optimization requires models that involve costs, and the coverage to be obtained
by any single test case should be maximal. Therefore, the model transformations for op-
timization are the most elaborate. First, we need to assign costs in the model. The cost
scheme used by the tool is to assign a cost of 1 to each covered edge and 0 to each un-
covered edge. We also add a new template, which has two locations — an initial non-goal
location and the goal location. The transitions from the initial location to the goal location
have a cost of X times the number of uncovered transitions. Thus, X functions as a weight
between the length of a test case and the value of covering an extra edge. That is, in the
model it is cheaper to traverse X — 1 covered edges and then traverse an uncovered edge
before going to the goal location, than to more directly go to the goal location.

Moreover, we need to annotate the model in order to track the covered edges. This is done
by adding an array of boolean variables, one variable for each edge. The array is initialized
according to the currently covered and uncovered edges. Then, for each edge, a so-called trap
formula is added, which sets the corresponding index of the array to ‘true’ when the edge is
traversed. This is called a trap formula, since the value is “trapped” after traversing an edge as it
can never be unset. With these additions we pose the reachability query whether the system can
reach the goal locations. Then, the optimization engine of CORA will try to find the cheapest way
of reaching the goal location, which should preferably cover a significant number of previously
uncovered edges.

All of the above cover the most of the inner workings of the testing tool. The tool works by
selecting the different algorithms that should be applied, which will be executed in turn using the
following order: query-based, optimization, random depth, single step. This order is chosen as it
is the most likely to produce an efficient test suite.

Time

When a UPPAAL model contains clocks and the resulting traces are timed, this is represented
in the resulting test case as if there was a variable called ‘delay’. This means that similarly
to using the translation from variable to scripting language, the same constructs can be used for
the translation of delays. Also, the given value of the delay can be accessed using the *$val’
notation. This all means that the resulting test cases will be interleavings of observations and
either actions or delay.

11



ICT-FP7-STREP-214755 / QUASIMODO Page 12 of 18 Public

Extra Features

For each test case that the tool generates it creates, with the test script, a UPPAAL model that
shows the coverage of that test model in relation to all prior test cases. The coverage of the
model is given in terms of a coloring scheme of the transitions. Blue transitions indicate that this
test case traverses the given edge, but that a test case before this one already covered that edge.
Green transitions indicate that the test case is the first to traverse that edge and is thus responsible
for covering that edge. Red edges indicate edges not covered by this test case, but by a previous
test case. Black edges are uncovered edges.

Besides indicating the coverage with colors, the model generated with the case also adds to
the user template the sequence of inputs that resulted in this test case. In case the input model is
deterministic, running the model in the simulator will result in showing the execution of the test
case.

Perspective

Future work includes adding more coverage criteria to the tool. Such criteria would include
location coverage (statement), which is a subset of edge coverage, and 2-switch coverage, which
is a superset of edge coverage.

12



ICT-FP7-STREP-214755 / QUASIMODO Page 13 of 18 Public

4 Interpreting a Successful Testing Process:
Risk and Actual Coverage

Participants

e Marielle Stoelinga, University of Twente, NL;

e Mark Timmer, University of Twente, NL.

Challenge

Existing coverage measures such as code coverage in white-box testing [7, 16] and state and/or
transition coverage in black-box testing [15, 17, 21] give an indication of the quality of a test
suite, but it is not necessarily true that higher coverage implies that more, or more severe, faults
are detected. This is because these metrics do not take into account where in the system faults
are most likely to occur. Risk-based testing methods do aim at reducing the expected number
of faults, or their severity. However, these are often informal [19], based on heuristics [6], or
indicate which components should be tested best [5], but rarely quantify the risk after a successful
testing process in a precise way.

A first attempt at a notion of coverage that does take into account the severity of errors
was provided by Brandan Briones, Brinksma, and Stoelinga [9]. They introduced a concept we
would call potential coverage, as it considers which faults can be detected during testing. This
measure, however, does not yet take into account the faults that are actually covered during a test
execution, making them not that precise.

Results

In [3], we present a framework in which risk and coverage can be defined, computed and opti-
mised in a black-box manner, for systems with nondeterminism. Key properties are a rigorous
mathematical treatment based on solid probabilistic models, and the result that lower risk (or
higher coverage) implies a lower expected number of faults.

The starting point in our theory is a weighted fault specification (WFS), consisting of (1)
a specification describing the desired system behaviour as an input-output labelled transition
system (IOLTS), (2) a weight function describing the severity of faults, (3) an error function de-
scribing the probability that a certain error has been made, and (4) a failure function describing
the probability that incorrectly implemented behaviour yields a failure. From the WES we derive
its underlying probability model, i.e., a random variable that describes the distribution of (possi-
bly erroneous) implementations. This allows us to define risk and actual coverage in an easy and
precise way.

Given a WES, we define the risk of a test suite as the expected fault weight that remains after
this test suite passes. We show how to construct a test suite of a certain size with minimal ex-
pected risk. We also introduce actual coverage for a test suite, which quantifies the risk reduction
obtained when an implementation passes it. Whereas risk is based on faults contained within the

13



ICT-FP7-STREP-214755 / QUASIMODO Page 14 of 18 Public

entire system, actual coverage only relates to the part of the system that has been tested. This
matches with the traditional interpretation of coverage.

Perspective

Although our work provides a thorough mathematical foundation to be built upon, its theoretical
nature makes it quite hard to apply it in practice. Some simplifications and approximations
might be useful to make the framework more practical. Moreover, it would be very interesting
to perform industrial case studies to assess the extent to which our notions of coverage and risk
indeed predict that little faults remain. The case studies could also be used to investigate potential
optimisations or simplifications to the framework.

14



ICT-FP7-STREP-214755 / QUASIMODO Page 15 of 18 Public

5 Industrial validation of test coverage quality

Participants
e Martijn Adolfsen, University of Twente, NL;
e Marielle Stoelinga, University of Twente, NL;

e Mark Timmer, University of Twente, NL.

Challenge

Several testing techniques were developed to reduce the number of software faults, from formal
methods to ad-hoc techniques. One of the concepts to improve software quality is using one
or more coverage metrics, e.g., statement coverage. A coverage metric specifies which parts of
program code should be executed, e.g., all statements. Each coverage metric has different criteria
and therefore has specific requirements that a test suite should meet. When a test suite meets the
requirements of a coverage metric, testers assume it is able to find more faults than a random test
suite that does not meet the requirements. Based on this assumption, coverage metrics are used
to quantify the quality of a test suite, i.e., the higher the percentage of coverage of test suite has,
the higher its quality is perceived, and the more faults it presumably will find.

We conducted an experiment to investigate if this assumption is indeed valid. The metrics
investigated are statement, branch and basis path coverage. By executing several test suites that
achieve different percentages of these metrics, and by using coverage tooling, we reveal the
actual quality of the test suites. Based on this, our aim is to conclude to what extent the use of
coverage metrics improves test suite quality. The research was done in the context of a Dutch
company called Info Support.

Results

The results of this research are presented in [1]. There appeared to be a normal to strong corre-
lation between the coverage percentages of several metrics and software quality, which suggests
that increasing the coverage percentage will likely increase the number of faults that are found
by a test suite. This holds for each tested metric and coverage percentage, i.e., independent
of the used metric and/or already achieved coverage percentage. However, the exact correla-
tion remains uncertain, as practical limitations resulted in the end in only a limited number of
measurements.

We observed that the different metrics performed equally, i.e., find almost the same amount
of faults. What should be taken into account on this result is that (1) tested coverage percentages
differed among the metrics, and (2) the cyclomatic complexity was relatively low, resulting in a
reduced difference among metrics.

Interestingly, even in best-case scenarios, most metrics were able to find as little as half of
the total faults. Therefore, coverage testing should definitely not be the only method in a test
process. After investigating the faults that were (not) found, we can conclude that faults that

15



ICT-FP7-STREP-214755 / QUASIMODO Page 16 of 18 Public

manipulated the behavior of the program under normal conditions were found mostly. Faults
that only occurred in more exceptional situations were mostly left undetected. It is likely that
boundary-value analysis and equivalence partitioning [16] would have exposed most of these
undetected faults in our case studies.

Perspective

Based on our results there are several interesting directions for future work. First, we tested
very low coverage percentages for the basis path coverage metric. However, despite the low
coverage percentages, test suites that did achieve these percentages covered a relatively high
amount of faults. Future research may investigate the increase in fault percentage for higher
coverage percentages.

Second, test cases used in this research were created based on the test-driven development
methodology. Obviously, this has a direct consequence on the way the system is tested, and
therefore the number of faults that are found. Further research could specifically focus on the
influence that the type of test cases has on the efficiency of coverage metrics.

Third, as we mentioned in our results, most faults that were not found by the coverage met-
rics, could have been exposed using boundary-value analysis and/or equivalence partitioning.
Therefore we suggest investigating their efficiency using industrial case studies. Finally, sim-
ilar studies are needed to obtain an increased confidence on the correlation between coverage
and software quality, and to validate our result. A recommendation is to increase the number
of injected faults compared to this experiment. This will improve the exactness of the correla-
tion coefficients. Also we recommend to add case studies that have a relative high cyclomatic
complexity, to investigate the effect this has on the efficiency of the metrics and the costs.

16



ICT-FP7-STREP-214755 / QUASIMODO Page 17 of 18 Public

References to Quasimodo Contributions

[1] M. Adolfsen. Industrial validation of test coverage quality. Master’s thesis, University of
Twente, 2011.

[2] U.H. Hjort, J.I. Rasmussen, K.G. Larsen, M.A. Petersen, and A. Skou. Model-based GUI
testing using uppaal at Novo Nordisk. In Proceedings of the 2nd World Congress on Formal
Methods (FM °09), volume 5850 of Lecture Notes in Computer Science, pages 814—818.
Springer, 2009.

[3] M.LLA. Stoelinga and M. Timmer. Interpreting a successful testing process: Risk and actual
coverage. In Proceedings of the 3rd IEEE International Symposium on Theoretical Aspects
of Software Engineering (TASE *09), pages 251-258. IEEE Computer Society, 2009.

[4] S. von Styp, H.C. Bohnenkamp, and J. Schmaltz. A conformance testing relation for sym-
bolic timed automata. In Proceedings of the 8th International Conference on Formal Mod-
elling and Analysis of Timed Systems (FORMATS ’10), Lecture Notes in Computer Science.
Springer, 2010. To appear.

References to Related and General Literature

[5] S. Amland. Risk-based testing: risk analysis fundamentals and metrics for software testing
including a financial application case study. Journal of Systems and Software, 53(3):287—
295, 2000.

[6] J. Bach. Heuristic risk-based testing. Software Testing and Quality Engineering Magazine,
November/December 1999.

[7] T. Ball. A Theory of Predicate-Complete Test Coverage and Generation. In Proceedings of
the 3rd International Symposium on Formal Methods for Components and Objects (FMCO
'04), volume 3657 of Lecture Notes in Computer Science, pages 1-22. Springer, 2004.

[8] H.C. Bohnenkamp and A. Belinfante. Timed testing with TorX. In Proceedings of the
International Symposium of Formal Methods Europe (FM ’05), volume 3582 of Lecture
Notes in Computer Science, pages 173—188. Springer, 2005.

[9] L. Brandan Briones, E. Brinksma, and M. 1. A. Stoelinga. A semantic framework for test
coverage. In Proceedings of the 4th International Symposium on Automated Technology for
Verification and Analysis (ATVA ’06), volume 4218 of Lecture Notes in Computer Science,
pages 399-414. Springer, 2006.

[10] L. Brandan Briones and H. Brinksma. A test generation framework for quiescent real-
time systems. In Proceedings of the 4th International Workshop on Formal Approaches
to Testing of Software (FATES ’04), volume 3395 of Lecture Notes in Computer Science,
pages 64—78. Springer, 2005.

17



ICT-FP7-STREP-214755 / QUASIMODO Page 18 of 18 Public

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

I.K. El-Far and J.A. Whittaker. Model-based software testing. In Encyclopedia of Software
Engineering (2nd edn), volume 1, pages 825-837. Wiley, 2002.

L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on symbolic spec-
ifications. In Proceedings of the 4th International Workshop on Formal Approaches to
Software Testing (FATES ’04), volume 3395 of Lecture Notes in Computer Science, pages
1-15. Springer, 2005.

L. Frantzen, J. Tretmans, and T.A.C. Willemse. A symbolic framework for model-based
testing. In Proceedings of the Ist Combined International Workshops on Formal Ap-
proaches to Software Testing and Runtime Verification (FATES/RV ’06), volume 4262 of
Lecture Notes in Computer Science, pages 40—54. Springer, 2006.

M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. In
Proceedings of the 11th International SPIN Workshop (SPIN ’04), volume 2989 of Lecture
Notes in Computer Science, pages 109-126. Springer, 2004.

D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - a
survey. Proceedings of the IEEE, 84(8):1090-1123, 1996.

G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas. The Art of Software Testing, Second
Edition. Wiley, 2004.

L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Optimal strate-
gies for testing nondeterministic systems. SIGSOFT Software Engineering Notes, 29(4):55—
64, 2004.

M. Newman. Software errors cost U.S. economy 59.5 billion annually, NIST assesses
technical needs of industry to improve software-testing. Press Release, http://www.
nist.gov/public_affairs/releases/n02-10.htm, 2002.

F. Redmill. Exploring risk-based testing and its implications. Software Testing, Verification
and Reliability, 14(1):3-15, 2004.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software —
Concepts and Tools, 17(3):103-120, 1996.

H. Ural. Formal methods for test sequence generation. Computer Communications,
15(5):311-325, 1992.

18



