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1 Introduction
Model-based testing aims at checking whether the behavior of a (physical) system under
test (SUT) is correct with respect to (conforms-to) its specification by executing the SUT,
thus complementing verification and model-checking of models.

In previous Deliverable D4.1 we extended the underlying theory for testing quantit-
ative systems, and in Deliverable D4.2 we presented our contributions to on- and offline
testing to systems where real-time is a key property. In D4.3 we presented coverage based
test generation and coverage metrics.

This deliverable reports on our results towards enabling (online) testing based on mod-
els that have, or require, probabilistic properties or hybrid (mixed discrete and continuous
signals).

The deliverable focuses on online testing where tests events are generated, executed
and evaluated event-by-event. This is opposed to offline testing where a test suite is first
generated and then executed. An online algorithm dynamically computes the state-set that
the model (and in the case of relativized conformance, the system model combined with
its environment model) could possibly occupy after the (timed) observations made so far.
As execution progresses outputs are checked against the legal actions in the current state
set, based on a precise formal notion of correctness. Similarly, the next input test input
event is typically chosen randomly (with equal probability) from the inputs enabled in the
current state set. A more detailed discussion and comparison of the properties of the two
methods were presented in Deliverable 4.3.

2 Testing Hybrid Systems
Participants

• Marius Mikucionis,AAU

• Kim G. Larsen, AAU

• Brian Nielsen, AAU

The goal is to advance techniques for (online) testing of hybrid systems. By definition,
an important characteristic is that these systems have a mix of (time sensitive) discrete
signals and evolutions of continuous variables (e.g., temperature, pressure, speed and
physical position etc.).

2.1 Challenges
Consider an example of the water level in two water containers, each from which water
is being consumed with a specific rate. The system also has a pump which can supply
water to one container at a time (with a certain rate). The water level must be greater
than a critical level. The water levels (v1, v2) may be captured by the hybrid automaton in
Figure 1.
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In a hybrid automaton the evolution of its continuous variables may be described
by any continuous function/differential equation. In the restricted class of linear hybrid
automata (LHA), the (first) derivative is (per location) bounded by an interval by two
integers (e.g. temperature ′ ∈ [2, 3]). Thus a timed automaton can be seen as a LHA
where clocks are continuous variables with constant derivative of precisely one.

Figure 1: Simple (Linear) Hybrid Automaton.

Given a model that describes the hybrid behaviors and especially the evolution of
continuous variables (typically through differential equations), and a suitable notion of
conformance, there are two sub-problems from a testing perspective:

• Generating input signals (esp. trajectories) to be fed to the SUT

• Monitoring and evaluating outputs (esp. trajectories) by comparing those of the
SUT with those permitted by the model

Whilst simulation of (deterministic) hybrid automata is computationally feasible (still
requiring advanced (possibly imprecise) numerical computation algorithms), their formal
analysis is difficult. In full generality, reachability analysis is undecidable. For linear
hybrid automata it is semi-decidable (termination not always guaranteed), and requires
use of comparatively costly polyhedra based data-structures algorithms.

Hence testing hybrid systems is challenging; note that also for online testing (esp.
the monitoring aspect) where computing the set of reachable set of states (of possibly
non-deterministic models and with timing-uncertainty) after a given history of observable
actions, is a core operation (both in ioco/TORX and rtioco/UPPAAL-TRON), makes in
general use of a reachability sub-procedure.

2.2 Results
As noted, analysis of hybrid automata requires fairly advanced and specialized algorithms
that cannot be achieved though a straightforward extension of those already in UPPAAL.
The required algorithms and data structures are more general and also much more costly,
and don’t fit easily in the existing UPPAAL implementation.

Except the first 2 points listed below, research developments and collaborations have
taken us in another direction emphasizing exploitation with external tools, where UPPAAL-
TRON is efficiently handling the discrete and timed signals and the continuous evolutions
are computed and monitored by dedicated simulators and model-checkers. Hence, separ-
ate models are required for each tool/aspect. Such an integration may at first seem simple,
but synchronization of time and of the models must be done carefully; the behavior of the
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models are rarely completely independent, as they have to react to certain events/threshold
crossings in the other model. Thus some communication and state tracking must be facil-
itated.

2.2.1 Encoding LHA using Stopwatches

UPPAAL has recently been extended with so-called stopwatches which are continuous
clock variables that can be stopped (by setting its derivative to zero) and resumed (setting
its derivative back to one), thus providing a means for integration over time. UPPAAL

is able to perform an (over-approximate) reachability analysis for such timed automata
with stopwatches. Earlier work [9] has shown that reachability analysis of linear hybrid
automata can be reduced (via a translation) to reachability analysis of timed automata with
stop watches. At the disadvantage of the translation reachability analysis may potentially
be more efficient than the general polyhedra-based algorithms for LHA[9].

Since stopwatches are also supported in UPPAAL-TRON (resulting in a slightly over
approximated state-set) this gives a path to testing LHA with the existing tool. It does
require a small extension that it is possible to read the value of a clock (encoding a con-
tinuous variable) and send this to the SUT (and reverse); in the current implementation,
this can only be done for discrete variables. This path has not been further implemented
or evaluated.

2.2.2 Tracking signals using integer variables

UPPAAL-TRON supports discrete (integer) variables may be updated with regular time
intervals defined by the clocks of the timed automaton models.

These values may be passed to and from the SUT (via its adapter) using channel
synchronization with value passing. Further, UPPAAL-TRON supports non-deterministic
choice, and especially integer-computation using the normal (simple) arithmetic operators
like {+,−, ∗, /}, that may be composed into relatively complex functions using iteration
and function abstractions using a C-like syntax. Hence, a continuous time varying signal
may be approximated using discrete variables. These time-varying data values are re-
computed on demand based on the clocks of the model, thus being in synchrony with the
remaining timed automata model.

We have identified a number of modeling techniques and patterns [13, 12] that exploit
these features to approximate a continuous time varying signal. These patterns include
both generating input stimuli, and the more difficult evaluation of whether the output sig-
nal is contained in an envelope (over approximation) of the desired signal. The techniques
have been successfully applied and demonstrated on an industrial case study of supermar-
ket refrigeration controller where different environment temperature curves were gener-
ated, and the value of a PID-regulator was monitored. Figure 2 illustrates tracking of the
temperature signal where the over-approximated values are connected to the TA model
(capturing discrete and timed behavior. The exact evolution between these bounds is not
checked (but may be by an external tool, see Section 2.2.4).

One goal is output evaluation, or for tracking the value of SUT internal continuous
variables that affects enabled input/output actions. In most cases, it is not realistic to
match the value precisely and the exact time it had that value, and thus it is important
make a (tight) over-approximation in both the value and time domain.
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Figure 2: Tracking Temperature Interval (from [13]). Dotted lines represents the tem-
perature, solid lines the sampled values, and the dashed perimeter the over-approximated
values.

• One technique is to use the power of a non-deterministic choice to compute the al-
lowed set of (integer) values/time-interval combinations. However, this may quickly
lead to large state-sets, depending on the required accuracy.

• An alternative and often better technique is to model the signal as piecewise mono-
tonic, use interval arithmetics and a pair of variables that respectively tracks the
allowed lower and upper bound on the signal, and slides these bounds as time pro-
gresses. This is more efficient both in the possible state-set size and in the number
of input/output events that the online test tool needs to process.

Figure 2 illustrates a scenario in the refrigeration controller. In the steady state the
internally computed temperature is close to the injected environment temperature. When
this change, and is observed by the controller, it gradually computes and outputs the cal-
culated temperature. This is captured by the larger envelope (still tight for this application
< 1 degree). The interval is collapsed when the temperature converges. In the scenario
the temperature crosses a specific threshold (the limit in Figure 2that triggers other events
(like engaging or disengaging the compressor or alarms).

Although these techniques work well in many cases, we do not find them generally
satisfactory from neither efficiency or conceptual points of view.

2.2.3 Virtual Real-time Clock Framework

One of the challenges when testing real-time systems is that the test must executed in
a timely fashion: the test input events must be supplied to the SUT at the time (or time
interval) prescribed by the test case, test output events must be observed and time stamped
accurately, and finally the tester and SUT must be in synchrony with respect to time.

Thus in real-time test execution in reality consists of executing two concurrent com-
municating real-time systems (the tester and SUT). Any disturbances in the scheduling
of either system, or in their communication may lead to a false verdicts. This is often
a problem when the SUT is software emulated on a host PC (typically running a non-
real-time OS) and ditto for the tester. The problem is exacerbated when both are running
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on the same PC. But even with dedicated test hardware and the embedded system run-
ning on target, time synchronization is problematic because both systems have their own
independent private clocks that are typically not exactly synchronized.

To enable testing of timed properties in face of these settings we have developed a
software solution in a form of a virtual clock framework that allows the SUT and test
executor (in our case UPPAAL-TRON) to explicitly agree on time. Thus, the purpose of
the virtual time framework is to provide “lab” conditions for testing software where the
value of a global reference clock is controlled and detached from physical time. Such a
framework enables testing of time delays specified in software in ideal conditions where
the time spent on computation and communication is treated as zero. If the computation
and or communication time is known and needed to be taken into account, then such
delays can be replaced by “timed-wait” calls and an abstraction of control software can
be tested under ideal conditions.

Time progresses for both parties when both have indicated to the framework by how
much they are prepared to delay. The framework advances time by the maximum amount
they can agree on. A direct positive effect of this is that test execution is (in most cases)
much faster compared to physical time. The price of using the framework is that certain
changes must be made to implementation to make it use the virtual clock. To make this
easy for a wide range of implementations we build the framework to support the monitor
programming paradigm within a subset of POSIX thread functions (Portable Operating
System Interface 1003.1b-1993 real-time extension) which thereby makes it easy to adopt
a large class of code with trivial function call replacement.

The Virtual clock assumes the following protocol:

• There is a single instance of a global clock in the entire test setup.

• All participating threads follow these rules:

– Register its presence at the global clock.

– All time-related system calls are redirected to the global clock.

– Each thread should perform some computation and eventually call to wait for
some condition to occur.

– The thread computation time is assumed to be negligible and only the waiting
times are significant.

• The global clock serves the threads in the following way:

– If there is at least one thread computing and not waiting, then the clock value
stays constant.

• If all threads are waiting for a condition to occur, then the global clock finds the
smallest clock increment which would trigger a timeout for at least one thread,
increments the clock and notifies appropriate threads.

Besides this original intention the virtual clock framework has served successfully for
a number of applications:

• It has been very useful for demonstration purposes by running the demo on a single
laptop, enabling demos to be given as part or ordinary presentations/talks.
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• It has been used to perform testing of the (medium access protocol) in the chess
WSN Node. The system under test is running on a PC host using emulated clocks
and the virtual clock framework. If the testing were to be done at target, it would
normally require a dedicated hardware test interface capable of high resolution pre-
cise timing.

• It has been used to interconnect UPPAAL-TRON with other model simulators like
Phaver/SpaceEX (Linear Hybrid Automata), Simulink. In this way efficient co-
simulation and refinement testing has been made possible.

Based on the many unforeseen applications and experiences from these we are now
improving the framework towards a more general and more open framework that lessens
the dependency on the concepts of the Posix/monitor model.

2.2.4 Co-simulation with external tools

We have developed an integration technique with other model-simulators of system as-
pects where UPPAAL-TRON is insufficient, and in particular of continuous signals.

The technique consists of 4 parts:

• A UPPAAL modeling pattern that enables the timed automata model to track and
react to important events of the continuous models

• An augmentation of the adapter-framework to report bounds on observed variables,
accompanied by an additional filter component in the engine to validate this bound.

• Optional use of the virtual clock framework.

Co-simulation with Simulink: In particular the technique has enabled integration with
Simulink such that this tool can now be used for co-simulation with UPPAAL-
TRON, such that (non-linear) dynamics can be simulated in Simulink whilst dis-
crete/timed aspects are handled efficiently in UPPAAL-TRON. This has two ap-
plications. 1) Simulink can be used for the environment emulation (and monitoring
of SUT outputs, if the user has encoded such a check in the Simulink model) part
of conformance testing in conjunction with UPPAAL-TRON. 2) refinement testing,
where a Simulink model (capturing system behavior at a low level of abstraction)
is treated as the SUT, and checked against a more abstract properties specified as
timed automata.

The integration is possible both in real-time and simulated-time mode.

The technique and application to Simulink is documented in Appendix A. This
work has been carried out in collaboration with the EC MULTIFORM project. The
Quasimodo work has focused on enabling the integration through a study of its
Simulink semantics, simulator interfaces/APIs, developing and adapting the UP-
PAAL modeling pattern, and supporting adapter changes. The actual tool integration
development work is mainly within MULTIFORM.

Co-simulation with Phaver/SpaceEX: Another alternative that we have explored is to
integrate UPPAAL-TRON with a model-checker for hybrid systems based on hybrid
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automata (where locations represent operating modes of the system and transitions
switches between these modes, and where differential equations within locations
describe evolution of continuous variables). The main idea is to combine the best of
UPPAAL-TRON, namely the efficient handling of time and discrete signals in very
large models, with the best of Phaver, namely the ability to describe and compute
(linear) differential equations. A successful first integration with input signal gener-
ation has been done, and a more ambitious integration with the newer SpaceEX tool
is being carried out that will also feature output monitoring and checking. However,
these developments takes place within the EC MULTIFORM project and hence
shall not be reported here, but is mentioned for completeness. The work is under
submission for ICTSS’11 (International Conference on Testing of Communicating
Systems).

2.3 Perspectives
We find the approach of using co-simulation with other tools for quite promising, enabling
simultaneous evaluation more and other system aspects than discrete event behavior. Be-
sides continuous behavior, also security and performance/efficiency aspects may require
specialized notations and tools. Another example is the Poosl simulator of the ASML
case reported in Deliverable 5.10.

3 Probabilistic Testing
A probabilistic model contains information that express with what probability the system
executes a given transition; this may by an input given to the system, an output delivered
by the system, or an internal computation step. Thus it may express information about
distributions of both expected uses and expected responses.

In general such probabilistic information has several applications in model-based test-
ing.

Operational Usage profile testing/statistical usage testing: Test input sequences are gen-
erated in correspondence with the distributions of the model such that they reflect
the expected use of the system. This is the basis for performance evaluation and
reliability estimation.

Guiding: Guiding either towards an area in the model that is of particular interest or is
particularly critical, or to increase coverage of the model (utilizing information of
likely outputs).

Statistical hypothesis testing: Here the goal is to estimate the probability of conform-
ance.

An important common problem is how to draw statistically correct samples from the
model (which may be fully stochastic and/or contain non-determinism).

3.1 Scheduler-based Probabilistic Testing with Profiles
This work has been recently submitted to SEFM 2011 [4].
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Participants
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• Jan Tretmans, Embedded Systems Institute, Radboud University Nijmegen.

3.1.1 Challenge

Model-based testing is one of the promising technologies to meet the challenges imposed
on software testing. In model-based testing an implementation under test is tested for
compliance with a model that describes the required behaviour of the implementation. A
prominent model-based testing approach is rooted in the ioco-testing theory, where mod-
els are expressed as labelled transition systems, and compliance is defined with the ioco
implementation relation [6]. This provides a sound foundation for labelled transition sys-
tem testing, and has proved to be a practical basis for several model-based test generation
tools and applications.

In the ioco approach to model-based testing, several steps in the test selection, gener-
ation and execution involve a non-deterministic selection among alternatives. In practice,
these nondeterministic selections are routinely implemented by a non-biased probabilistic
selection, that is, by uniform probabilistic choices among the alternatives. Uniform dis-
tribution is, for example, used in the ioco model-based testing tools TorX [1], JTorX [2],
and TorXakis [5]. In this work, we investigate what happens to the theory of ioco testing,
if one includes this probabilistic selection explicitly. To that end, we aim at an exten-
sion to the ioco theory by including probabilities in the test selection process. We strive
for an orthogonal and expressive extension, that supports the possibility to guide the test
selection using profiles derived empirically.

3.1.2 Results

After identifying the principal attack points in the test generation algorithm where non-
deterministic selection occurs, we propose an expressive probabilistic test selection ap-
proach, in the form of randomised schedulers, that can pick probabilistically based on the
full history observed so far. Several options and their interplay are discussed, and we in
particular distinguish schedulers based on white-box and black-box histories. We then
iterate the theory of ioco testing under these schedulers, and arrive at a probabilistic ioco
theory.

Concretely, we link two possible ways to define schedulers. One of them directly
works on the structures as they appear in the test selection process, and provides a prob-
abilistic selection over the next actions possible after a certain trace has occurred. This is
achieved by a next action scheduler (NA), and this is technically the directly matching in-
terface to the testing process. To use this direct approach in practice however requires the
test engineer to reason about technically involved objects, namely sets of states reached
after executing some trace, where again the trace is driven by the random test selec-
tion. Because this is likely not very practical, we propose a second, indirect approach
that is clean, elegant, and extends over so-called Markov chain usage model approaches
(MCUM) [7, 3]. The latter prescribe the expected usage profile using Markov chains,
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but do not consider ongoing interaction of input and output. We take a similar approach
for the stimuli to the SUT, which we allow to be generated by a Usage Profile scheduler,
which corresponds to a (not necessarily Markov) probabilistic usage model. The outputs
of the implementation can, to some extent, be assumed to be governed by probabilities
as well. This is not reflecting the usage model side, but the implementation side: it re-
flects assumptions over the likely behaviour in the specification, such as: In 2 percent
the account may not allow a withdrawal of money. This opens the possibility to abstract
data-dependent behaviour into probabilistic selections over the next output offered to the
environment (responses). We therefore complement the up scheduler with a Implementa-
tion Profile scheduler (ip).

While this appears like a very useful and powerful approach to probabilistic testing,
it raises the question how a pair of up- and ip-schedulers can be linked to the direct test
selection with NA-schedulers. We show how a pair of ip- and up-schedulers induces
a unique NA-scheduler. The construction of this NA-scheduler is not difficult. Still, in
order to strongly argue that this scheduler is the natural object arising, we use embeddings
of the resulting mathematical objects into partially observable Markov decision processes
(POMDPs).

3.1.3 Perspective

The approach we introduce allows for guiding conformance test execution based on prob-
abilistic profiles. The probabilities introduced by one or more schedulers can be rooted
in different reasons and for different purposes, apart from usage and implementation pro-
files:

• Intended test coverage (higher/lower probability paths)

• Probabilities provided by the development leader who knows which parts may be
more troubled or complex.

• Tuned probabilities based on the results of previous test executions.

We are looking into ways of providing a measure of coverage and reliability to the testing
process based in the IPPO model. Also, we aim at interval estimation to validate an inten-
ded probabilistic choice directly from the specification, giving rise to a full probabilistic
ioco.
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A Uppaal TRON to Matlab/Simulink Interface and Co-
Simulation

Author: Marius Mikuionis, Kim G. Larsen, and Brian Nielsen, AAU

(The technical report of this appendix has also been sumbitted as part of EC Multiform
Deliverable 3.2.2)

The paper shows how to connect simulation and testing tools in order
to enhance environment emulation capabilities in online testing. UP-
PAAL TRON [11] is a successful online testing tool for real-time sys-
tems using timed automata model-checking engine. Matlab/Simulink
is a popular tool for simulating non-linear dynamical systems. We pro-
pose to augment the timed automata models with dynamical behavior
co-simulation by Simulink for environment emulation purposes. The
resulting framework can also be used to test conformance of Simulink
models against timed automata specification.

A.1 Motivation
Simple embedded systems consist of a controller and its plant under control. The most
of requirements for controller software can be described by timed automata models, how-
ever the plant often consists of physical processes which are best modeled by differential
equations or similar dynamical models.

Fig. 3 shows a setup for testing Danfoss cooling controller [12], where the controller
is connected to UPPAAL TRON. The test specification is a timed automata model con-
sisting of processes modeling assumptions about environment and requirements for the
controller. In this particular case the environment consists of a room temperature, dis-
play and relay actuators. The requirements consist of temperature calculation converting
temperature sensor signal into meaningful temperature values, low and high temperat-
ure alarms and compressor depending on temperature values, and finally fan and defrost
cycle. The specification also defines the input/output interface between the environment
and the controller: the temperature sensor values are inputs, calculated temperature value
and relay activations are outputs.

The goal of this paper is to show how continuous input trajectories can be generated
by an external simulation tool like Simulink during the online test. In order to achieve the
goal the following problems need to be solved:

1. Exchange UPPAAL integer variable values with real-valued signals from Simulink
in a sound way.

2. Synchronize discrete timed automata events with continuous signals.

3. Time synchronization between the tools.
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Figure 3: Online test setup for Danfoss EKC cooling controller.

A.2 Method
The first problem of exchanging variable values is solved by a modeling pattern and UP-
PAAL TRON extension. The continuity of signals is then solved by Simulink integration
components (S-Function library). Finally the time synchronization is performed either by
using TRON’s Virtual Time framework or host’s clock.

Fig. 4 shows the test setup where timed automata environment emulation is comple-
mented by Simulink trajectories. The connection of tools is achieved through UPPAAL

TRON test adapter and Simulink S-Function interfaces.

Figure 4: Complementing environment emulation with Simulink trajectories.

The soundness of timed automata co-simulation with Simulink trajectories is ensured
through abstraction: the environment model has is an abstract representation of the gen-
erated trajectory.

A.2.1 Modeling Pattern

In online testing, the role of the tester is to emulate the environment model and check
that implementation conforms to the model of requirements. UPPAAL TRON assumes
that the system model is closed, i.e. the system consists of only an environment and an
implementation and that there is no third party perturbing the test. Hence whatever input
trajectory is being generated, it has to be generated in the environment model too.

We propose a systematic way of creating sound UPPAAL timed automata abstractions
of continuous trajectories by encoding real-valued signals in two integer bounds.
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Fig. 5 shows an abstract temperature calculation, where the concrete temperature rises
from an old to a new value and its abstract value is represented by an expanded interval
which is collapsed when the temperature converges. The corresponding temperature ab-
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Time
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1 
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gr
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Figure 5: Abstract temperature calculation.

straction is modeled in the UPPAAL timed automaton in Fig. 6 by IUTCalcTemp vari-
able which is a structure consisting of L and H integer members denoting the lower and
higher bound respectively. Initially, the automaton waits for new values from temperat-
ure sensors in IUTTemp variable signaled by observable temp r channel. In location
Widened the calculated temperature interval is widened denoting larger possibilities
for calculated temperature value. Then the rest of the model the model is notified by
tempChange at any and all times between 0 and 145 time units (the transition is not
observable). Later in location Narrowed the interval is collapsed to a more definite
temperature and the rest of the model is notified by tempChange. The automaton is
made input-enabled by additional edges with temp r synchronizations. Fig. 7 shows a
low temperature alarm requirement which is sensitive to calculated temperate range in
IUTCalcTemp, e.g. in location Off automaton has two options: to stay in location
Off when higher bound is greater or equal than LowTempLimit by executing a loop or
move to location Triggered when the lower bound is less than LowTempLimit.

Similarly, Fig. 8 shows the environment model generating ranges of possible temper-
ature values in ENVTemp: in location Dec the range values are decreased and in location
Inc the range values are increased and passed to adapter as inputs. The change of temper-
ature is changed by smoothly widening the interval: only one bound is changed while the
other uses the displayed temperature bound. The generated pair of low and high bounds
can then be interpreted by the test adapter as suggestion to generation any value from
that range. At this point the test adapter may consult Simulink to generate a concrete
value or trajectory from the range. The generated concrete value may be approximated
by a closest integer pair and fed back to tester, where UPPAAL TRON would assign more
concrete values to the temperate bounds resulting in more concrete emulation.

A.2.2 Test Adapter API

This section describes the variable value exchange in adapter protocol in more details.
Consider a situation shown in Fig. 9, where the lower and higher bounds are encoded
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Figure 6: Abstract model for temperature calculation.
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Figure 7: Low temperature alarm depending on temperature bounds.
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Figure 8: Abstract temperature generation.

by variables L and H respectively. Suppose, initially the bounds are 5 and 10 which
are sent as input values to a test adapter. The adapter interprets the values as interval
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[5; 10], generates a concrete input with value 7.5 and returns approximating interval [7; 8]
as variable values 7 and 8. TRON then checks that the delivered interval is within the
model bounds and updates the bounds accordingly leading to a more concrete emulation
of environment than it is specified in the model.

Figure 9: Message sequence chart of input and output signal translation.

The same way the outputs from IUT can be checked: suppose, model dictates that
the bound variables contain 10 and 15, the adapter receives value 12.3, approximates the
value with interval [12; 13] and passes to tester, then TRON checks that the output range
is within modeled bounds and updates the bound variables.

Note that the variable update should always be within modeled bounds, thus the tested
behavior is always a subset of the abstract modeled behavior which is consistent with
rtioco conformance relation.

The test adapter API is extended with a concept of bounds along the old concrete
variable values. Listing 1 shows the extended reporter interface used to configure input
and output channels together with variables. The lines 14-17 are used to configure bounds
to input and output actions on specified channels.

The bounds are then checked and updated during the test execution by the algorithm
in Listing 2. The algorithm computes a conjunction of the abstract model region and more
concrete region built from adapter values.

Note that it is possible that the region from adapter is not completely included in
the model’s region, meaning that the signal may potentially be out of modeled range
due to limited precision in measurement or over-approximation. In such cases the testing
continues on the basis that there is no conclusive evidence that the IUT behavior is outside
the specification, but such deviation is a good candidate for diagnostic check later if the
test eventually fails.

A.2.3 Simulink Integration

Fig. 10 shows the architecture of TRON integration into Simulink:

• The upper layer shows that TRON appears as a S-Function component which can
be connected to other Simulink components.

18
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Listing 1: Extended UPPAAL TRON test adapter API.�
1 struct Reporter
2 {
3 void (∗ repor t now ) ( Reporter ∗ ,
4 i n t 3 2 t chan , u i n t 1 6 t n ,
5 const i n t 3 2 t data [ ] ) ;
6 i n t 3 2 t (∗ get InputEncoding ) ( Reporter ∗ ,
7 const char∗ inputChanName ) ;
8 i n t 3 2 t (∗ getOutputEncoding ) ( Reporter ∗ ,
9 const char∗ outputChanName ) ;

10 i n t 3 2 t (∗ addVarToInput ) ( Reporter ∗ , i n t 3 2 t chan ,
11 const char∗ v a r i a b l e ) ;
12 i n t 3 2 t (∗ addVarToOutput ) ( Reporter ∗ , i n t 3 2 t chan ,
13 const char∗ v a r i a b l e ) ;
14 i n t 3 2 t (∗ addBoundsToInput ) ( Reporter ∗ , i n t 3 2 t chan ,
15 const char∗ low , const char∗ upp ) ;
16 i n t 3 2 t (∗ addBoundsToOutput ) ( Reporter ∗ , i n t 3 2 t chan ,
17 const char∗ low , const char∗ upp ) ;
18 i n t 3 2 t (∗ setTimeUni t ) ( Reporter ∗ ,
19 const i n t 6 4 t & mic rosecs pe r un i t ) ;
20 i n t 3 2 t (∗ setTimeout ) ( Reporter ∗ ,
21 i n t 3 2 t t i m e o u t i n u n i t s ) ;
22 const char∗ (∗ getErrorMessage ) ( Reporter ∗ ,
23 i n t 3 2 t e r ro r code ) ;
24 } ;
� �
• The layer below stands for Matlab/Simulink machinery simulating the whole model.

• The execution of TronSFun component requires loading the TRON adapter lib-
rary TronSFun.mexglx which translates Simulink input/output to TRON events
and back.

• Subsequently TRON is loaded as a dynamically linked library libtron.sowhich
reads the model, interacts with the test adapter and produces test logs.

Discrete inputs from TRON are converted to continuous input to Simulink in the following
way:

1. TRON offers input action with values and bounds attached.

2. The test adapter updates and stores a local copy of the values and the bounds.

3. The test adapter provides the copied values whenever is requested by Simulink.

4. Simulink uses the values to feed to further components and generate trajectories.

Continuous outputs from Simulink are converted into discrete UPPAAL events by the
following way:

1. The test adapter monitors the output signal from Simulink.

2. The test adapter reports and output event (potentially with values and ranges) whenever
output signal reaches or crosses some discrete bound.

19



ICT-FP7-STREP-214755 / QUASIMODO Page 20 of 22 Confidential

Listing 2: Extended data check for variable bounds.�
1 bool s a t i s f i e s ( Symbol icState s ta te ,
2 VarBound lower , VarBound upper ,
3 i n t 3 2 t valueLower , i n t 3 2 t valueUpper )
4 {
5 i n t 3 2 t modelLower = max( lower . getValue ( s t a t e ) , valueLower ) ;
6 i n t 3 2 t modelUpper = min ( upper . getValue ( s t a t e ) , valueUpper ) ;
7 i f ( modelLower <= modelUpper ) { / / non−empty reg ion
8 lower . setValue ( s ta te , modelLower ) ;
9 upper . setValue ( s ta te , modelUpper ) ;

10 return true ;
11 } else return fa lse ;
12 }
� �

Figure 10: Abstraction of temperature calculation.

3. TRON checks whether the observed output (and values with ranges) conforms to
the model behavior.

A.2.4 Timing

We need to synchronize the time between the tools at runtime since both tools participate
in online test execution at the same time and any delay may affect the outcome. The time
synchronization is achieved through Virtual Time framework implemented in UPPAAL

TRON.
Briefly, the Virtual Time framework consists of global clock (GC) object, where all

time related and thread creation systems calls are routed to, the threads perform computa-
tions and eventually ask the system to sleep or wait for some event, GC is advanced when
all threads agree to wait and GC wakes or notifies the earliest thread.

In a fixed time-step simulation, Simulink is represented by a single thread loop which
computes and routes the input/output signals between its components and then requests
to sleep for one time-step. Similarly TRON uses one thread to do its computations and
request for varying time delays which usually are at least an order of magnitude longer
than one time-step. The Virtual Time framework ensures that global clock is advanced
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efficiently, i.e. no thread is woken until it needs to and the clock is advanced at the shortest
requested pace at once. Consequently TRON’s performance is not affected by tiny steps
of Simulink simulation and Simulink seamlessly read variable snapshots.

The Virtual Time framework requires minimal adjustments and the global clock can
be switched to a host’s clock via command line without a need for recompilation.

A.3 Example
Fig. 11 shows an overview of Simulink model where Tester is connected in the loop to-
gether with generator component (tempGen) and IUT (tempMonitor and lowTempAlarm).

Figure 11: Simulink model of overall system.

Figure 12: The details of tester component showing TronSFun.

A.4 Results and Discussion
The paper provides modeling abstraction paradigm for testing using UPPAAL timed auto-
mata in conjunction with Simulink models. The two models are synchronized with data
variables and time.

The connection is implemented as test adapter, thus Simulink may equally act as an
implementation under test.
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Figure 13: The details of temperature generator which generates a sine curve between
lower and upper bounds.

Figure 14: The details of temperature monitor which calculates the displayed temperature.

Figure 15: The details of temperature monitor which calculates the displayed temperature.

In the future it would be interesting to connect UPPAAL TRON, Simulink, PHAVer
and implementation under test to achieve a complete testing framework of hybrid systems.
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