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1 Introduction

This deliverable provides first insight into how the Quasimodo partners tackle the case studies
introduced in Deliverable 5.2 [7]. In particular, it is described how the systems are modelled and
to what purpose. First results, as far as they exist, are presented.

Two case studies of the proposed four are currently under scrutiny by the project partners:
the gMAC protocol, proposed by CHESS, and theAccumulator Charge Controller case study,
proposed by Hydac.
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2 Hydac: Accumulator Charge Controller

For a description of this case-study we refer to [7].

2.1 SU

2.1.1 Participants

• Holger Hermanns, Saarland University.

• Kai Mittermüller, Hydac/Saarland University.

2.1.2 Model

The Hydac Case (Accumulator Charge Controller) has been modelled with the Simulink and
Stateflow formalisms from the MathWorks.

Matlab-Simulink model. This case study is based on a product which has been developedby
HYDAC, but is not yet available on the market. The problems and tasks described here for this
concrete product are also easy transferable to other products, so the HYDAC has a great interest
in the knowledge transfer provided by this EU-project. The product is an accumulator-charge
controller (ACC) which optimises the energy and the wear of the used components, especially
the pump. The Matlab-model was built to compare our newly developed controller with the
existing one. The overall system is depicted in Figure 1.

The consumers are modelled as a “Repeating Sequence Block”.This Block creates a recur-
ring curve which represents the consumption of oil (Figure 2). Thex-axis is the time in seconds,
and they-axis the consumption in l/s. The recurrence allows us to simulate successive repeating
cycles. The “Accumulator-block” is again a Simulink model,which is depicted in Figure 3.

This model describes the physical behaviour in the accumulator. First we calculate the vol-
ume change (for the gas) from the state of the pump and the current consumption. This change is
the derivation of the volume, hence the next block integrates this change. Thereby we assume an
initial value of the gas volume of 40 litre. To get the oil volume we simple subtract the gas vol-
ume from the total volume of the accumulator. Based on the pressure of the oil we can calculate
the pressure of the gas and from this pressure the energy consumption.

Now we take a look at the other controllers in our model: The “2-point (sl)” controller in
Figure 4(a) contains a 2-point-controller as Simulink model. The “2-point (c)” controller in Fig-
ure 4(a) also describes a 2-point-controller, but as a Stateflow model which works with discrete
time (clocked by “clock-block”) and which uses C-functions. The clock is necessary to call
the C-functions and is more realistic then a continuous timecontroller. The clock-rate is 10ms,
which is a normal sample rate in hydraulics.

The third controller “ACC (c)” in Figure 5 contains the new accumulator charge control. For
this controller, an additional signal “cycle” is necessary, which states that the next cycle starts.
This signal is also available at real machines.
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Figure 1: System

Figure 2: Consumer
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Remark:

V (t)′ = C(t)(−pp)

P (t) = c/(V (t)k)

E(t)′ = P (t) − P0

Figure 3: Accumulator

(a) 2-point (sl) (b) 2-point (c)

Figure 4: 2-point controllers

On the basis of this automaton the single phases of the accumulator charge controller can
be recognised. The first state is the “cycle recognition”. Inthis state the ACC uses a 2-point
controller to steer the pump and measures the pressure and the pump state. From these values
it is possible to calculate the volume curve without the pump. Between these two cycles the
function “optimizeacc()” calculates the optimal switching points for the pump, which are the
basis for steering the next cycle. This happens with the function “control acc()”. Equal to the
cycle recognition the pressure and the pump state get recorded, too. The third state is a backup
system, for the case that the pressure leaves the safe area. This is necessary, if an unusual event
occurs (e.g. leakage). The backup system uses a 2-point controller.

To make the system more realistic, the model contains additionally a “Discretization-block”
(Figure 6). This block discretises the pressure and allows on the other side to add noise. The
discretisation of the pressure is done with 12 bit, which is the default measuring accuracy in
hydraulics. In our case the range from 0 to 400 bar is split in 4096 possible values. The noise is
created by a “Band-Limited White Noise”-block and can be turned on and off independently of
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Figure 5: ACC

the discretisation in the system (Figure 1).

2.1.3 First Results

The Simulink-Stateflow models enabled us to get various insights into the functioning of the
different systems. For that, we used the simulation capabilities provided by Simulink, on a
variety of model instance with different consumer profiles,pumps and accumulator settings. In
all the simulation studies carried out, the following observations were made:.

1. The 2-point controller always keeps the pressure in safe margins.

2. The ACC controller always keeps the pressure in safe margins.

3. The ACC controller always uses considerable less energy than the 2-point controller.

Thus we were able to experimentally validate—but not formally show—some of our most basic
system requirements. The third experimental observation is exemplified in the chart in Figure 7.

This work and further details are reported in [9].
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Figure 6: Discretisation

Figure 7: Energy consumption 2-point controller/ACC
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2.2 CNRS, AAU, CFV

2.2.1 Participants

• Franck Cassez, National ICT Australia & CNRS, Sydney, Australia

• Jan J. Jessen and Kim G. Larsen, CISS, CS, Aalborg University, Denmark

• Jean-François Raskin, CS Department, Université Libre de Bruxelles, Belgium

• Pierre-Alain Reynier, LIF, University of Marseille & CNRS,UMR 6166, France

• Kai Mittermüller, Hydac.

2.2.2 Models

To solve the Hydac control problem, we use three complementary tools for three different pur-
poses:

• For the synthesis phase, we construct a (game) model of the case study and compute a
controller with UPPAAL-TIGA [1];

• To verify the robustness of our controller we use PHAVER [6] and embed our synthesised
controller into a continuous environment modelled by a hybrid automaton.

• Finally, performance-wise, we use SIMULINK [10] to compare the synthesised controller
with the ones provided by Hydac: the2-point and the Smart controllers (the latter being
described in Section 2.1).

The oil consumption of the machine is cyclic. The cycle of consumptions, as given by the
Hydac company, is depicted in Fig. 8.

Detailed Description of the System. Each period of consumption is characterised by a rate of
consumption (expressed as a number of litres per second), a date of beginning and a duration.
We assume that the cycle is knowna priori: we do not consider the problem of identifying the
cycle (which can be performed as a pre-processing step). Thecontrol strategy must allow the
machine to operate for an arbitrarily large number of cycles. At time 2, the rate of the machine
goes to1.2l/s for two seconds. From8 to 10 it is 1.2 again and from10 to 12 it goes up to2.5
(which is more than the maximal output of the pump). From14 to 16 it is 1.7 and from16 to 18
it is 0.5.

Even if the consumption is cyclic and known in advance, the rate is subject tonoise: if the
mean consumption for a period isc l/s, in reality it always lies within that period in the interval
[c − ǫ, c + ǫ], whereǫ is fixed to0.1 l/s. This property is notedF.

The volume of oil within the accumulator is initially equal to 10 l . The pump is eitheron or
off, and we assume it is initiallyoff. The operation of the pump must respect the followinglatency
constraint: there must always be two seconds between any change of state of the pump, i.e. if it
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is turnedon (respectivelyoff) at timet, it must stay on (respectivelyoff) at least until timet + 2,
we noteP1 this property. When it ison, itsoutput is equal to2.2l/s. Note that as the power of the
pump is not always larger than the demand of the machine during one period of consumption (see
Fig. 8 between10 and12), some extra amount of oil must be present in the accumulatorbefore
that period of consumption to ensure that the minimal amountof oil constraint (requirementR1)
is not violated1.

The controller must operate the pump (switch it on and off) toensure the following two main
requirements:

• (R1): the level of oilv(t) at timet (measured in litres) into the accumulator must always
stay within twosafety bounds[Vmin; Vmax], in the sequelVmin = 4.9l andVmax = 25.1l;

• (R2): a large amount of oil in the accumulator implies a high pressure of gas in the ac-
cumulator. This requires more energy from the pump to fill in the accumulator and also
speeds up the wear of the machine. This is why the level of oil should be kept minimal
during operation, in the sense that

∫
t=T

t=0
v(t) is minimal for a given operation periodT .

While requirement(R1) is asafety requirement and so must never be violated by any controller,
(R2) is anoptimality requirement and will be used to compare different controllers.

To summarise, the controller to design must turn
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Figure 8: Cycle of the Machine.

on and off the pump at the appropriate points in time
while respecting thelatency of the pump (property
P1) to ensure that requirementsR1 is satisfied, even
under the fluctuationsF within the cyclic consump-
tion phase, for an arbitrarily long period of time.
Moreover we should try to minimise the accumu-
lated oil during each cycle (requirementR2). Be-
cause the consumptions are subject to noise, it is
necessary to allow the controller to check periodi-
cally the level of oil in the accumulator (as it is not predictable in the long run). Nevertheless,
the controller should exploit the cyclic nature of the consumption to optimise the level of oil. So,
we will also allow our controllers to take control decisionsat predefined instant in time during
the cycle using timers.

The UPPAAL -T I GA Model. To keep the model simple enough, we have designed a model
which: (a) considers one cycle of consumption; (b) uses an abstract model of the fluctuations of
the rate; (c) uses a discretisation of the dynamics within the system. Second, to make sure that
the winning strategies that will be computed by UPPAAL-TIGA are implementable, the states
of our game model only contain the following information, which can be made available to an
implementation:

• the volume of oil at the beginning of the cycle;

• the ideal volume as predicted by the consumption period in the cycle;

1It might be too late to switch the pump on when the volume reachesVmin.



ICT-FP7-STREP-214755 / QUASIMODO Page 12 of 24 Public

• the current time within the cycle;

• the state of the pump (on or off).

First, we discretise the time w.r.t. ratio stored in variable D, such thatD time units represent
one second. Second, we represent the current volume of oil bythe variableV. We consider a
precision of0.1l and thus multiply the value of the volume by10 to use integers. This volume
evolves according to a rate stored in variableV rate and the accumulated volume is stored in the
variableV acc. Finally, we also use an integer variabletime which measures the global time
since the beginning of the cycle.

The model for the behaviour of the machine is represented on Fig. 9(a). Note that all the
transitions are uncontrollable (represented by dashed arrows).When a time at which the rate
of consumption changes is reached, we simply update the value of the variableV rate. The
additional central node calledbad is used to model the uncertainty on the value ofV due to
the fluctuations of the consumption. The functionNoise checks whether the value ofV, if
modified by these fluctuations, may be outside the interval[Vmin + 0.1, Vmax − 0.1] 2. The
functionfinal Noise checks the same but for the volume obtained at the end of cycleand against
the interval represented byV1F andV2F.

The model for the pump is represented on Fig. 9(b). The transitions are all controllable (plain
arrows). The pump simply consists of two locations representing whether the pump isON or
OFF. Moreover, the latency constraint3

P1 is expressed using the clockz. An additional integer
variablei is used to count how many times the pump has been started on. Weuse parameterN to
bound this number of activations, which is set to2 in the following.

We use a third automaton represented on Fig. 9(c) to schedulethe composition. Initially
it sets the value of the volume toV0 and then it repeats the following actions: it first updates
the global variablesV, V acc and time through functionupdate val. Then the scheduling is
performed using the two channelsupdate cy4 andupdate pump. When the end of the cycle
of the machine is reached, the corresponding automaton setsthe boolean variabledone to true,
which forces the scheduler to go to locationEND.

Simulation with SIMULINK . Fig. 10 shows the SIMULINK block diagram for simulation of
the strategies synthesised by UPPAAL-TIGA. The diagram consist of built-in functions and four
subsystems:Consumer, Accumulator, Cycle timer andPump activation (we omit the details
of the subsystems). TheConsumer subsystem defines the flow rates used by the machine with
the addition of noise: here the choice of a uniform distribution on the interval[−ǫ, +ǫ] with
ǫ = 0.1l/s has been made. TheAccumulator subsystem implements the continuous dynamics
of the accumulator with a specified initial volume (8.3l for the simulations). In order to use the
synthesised strategies the volume is scaled with a factor 10, then rounded and feed into a zero-
order hold function with a sample time of 20s. This ensures that the volume is kept constant

2For robustness, we restrain safety constraints of0.1 l.
3Notice that we impose a bit more thanP1 as we require that2 seconds have elapsed at the beginning of the

cycle before switching on the pump.
4We did not represent this synchronization on Fig. 9(a) to ease the reading.
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Figure 9: UPPAAL-TIGA models.
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during each cycle, which is feed into the strategy function.The Pump activation subsystem
takes as input the on/off dates from the strategy (for the given input volume of the current cycle)
and aCycle timer, that holds the current time for each cycle.

2.2.3 First Results

The results of our modelling/synthesis/verification/simulation methodology show that the con-
troller synthesised with UPPAAL-TIGA is robust whereas the robustness of the Smart controller
is unsettled. More interestingly, the simulation reveals that the performances of the synthesised
controllers provide a vast improvement both of the Smart Controller (33%) and of the2-point
Controller (45%). The methodology and results are reporteddetails in [5].
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3 CHESS: Wireless Sensing

For a description of this case study, we refer to [7].

3.1 ESI/RU

3.1.1 Participants

• Faranak Heydarian, Radboud University;

• Julien Schmaltz ESI/RU Eindhoven;

• Frits Vaandrager, Radboud University.

We consider the formal analysis of the timing parameters of the gMAC protocol developed
by CHESS for Wireless Sensor Networks (WSN). Each node of a WSN has its own hardware
clock, which is drifting apart from the other clocks. The protocol implemented by CHESS (1)
includes a clock synchronisation mechanism, and (2) a “guard” timed used to delay the sending
of messages so that even the slowest nodes are ready to receive. The guard time is key to the
functional correctness of the WSN, but also to its energy consumption. Our goal is to analyse
the functional correctness of CHESS solution with respect to the value of the guard time.

3.1.2 Model

We model CHESS solution as a network of timed automata which is analysed using the UPPAAL
model checker. Every nodei is composed of three automata: the clock, the wireless sensor node,
and the synchroniser. Each automaton is parameterised by index i. The network is represented
by the parallel composition of all automata of all nodes. Table 1 presents the main parameters of
our model.

Parameter Description Constraints
N number of nodes 0 < N
C number of slots in a time frame 0 < C
n number of active slots in a frame 0 < n ≤ C

Nodes set of nodes Nodes = [0..N − 1]
tsn[] array of TX slot numbers ∀i ∈ Nodes, 0 ≤ tsn[i] < n

∀i, j ∈ Nodes, i = j iff tsn[i] = tsn[j]
k0 number of clock ticks in a time slot 0 < k0

g guard time 0 < g, g + 1 < k0, 2.g < k0

min The minimal time between two clock ticks0 < min

max The maximal time between two clock ticksmin < max

Table 1: Network Parameters
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The clock. The hardware clock is modelled as the timed automaton depicted in Figure 11. The
clock drift is represented by the constantsmin andmax . A clock tick is produced in at leastmin

time units and beforemax time units. This model also includes jitter as the difference between
ticks is not constant over time.

Figure 11: Timed automaton of a wireless sensor node’s clock

This automaton has the following behaviour. It performs a synchronisation actiontick [i]!
when its clock variablex has reached a value betweenmin andmax time units, and then returns
to its initial state by resettingx to zero. With each tick, the clock updates the value ofclk [i] by
(clk [i] + 1) mod k0 to refresh the position of the pointer of the current slot. The length of a slot
is k0 clock cycle.

Figure 12: Timed automaton for a single wireless sensor node

The wireless sensor node. Initially, the node is in location “WAIT”. At the beginning of a slot
(i.e., whenclk = 0), if the current slot number (csn) equals the transmission slot number (tsn),
nodei is transmitting and moves to location “STARTTX”. The node waits for the guard time (g)
before moving to location “SENDING” where it effectively sends a message. The transmission
endsg time units before the end of slot, i.e., whenclk = k0 − g. The automaton moves then to
the location “WAIT” and wait until the end of the slot (i.e., whenclk = k0 − 1) to increment its
current slot number on the following clock tick. If at the beginning of a slot, a node is not sending,
it stays in location “WAIT” for the duration of the slot. At the end of the slot, it increments its
current slot number.



ICT-FP7-STREP-214755 / QUASIMODO Page 17 of 24 Public

The synchroniser. This automaton implements the clock synchronisation mechanism of CHESS.
In our model, this synchronisation happens on the transition from “S1” to “S0” (see Figure 13).
Counterclk is reset tog+1. Each node is expected to receive a message afterg (whereg denotes
the value of the guard time) clock cycles. We add1 to take into account that resetting the counter
takes one additional cycle.

Figure 13: Timed automaton of a synchroniser

Synchronisation happens when a node starts sending a message, i.e., when producing action
start message. The topology is represented by Boolean matrixtop. Each elementtop[i][j]
represents the existence of a connection between nodei and the node transmitting in slotj, i.e.
the node with indextsn[j]. Nodei is allowed to synchronise if it has a connection with the node
transmitting in the current slot, i.e., iftop[i][csn [i]] is true. Using this modelling feature we can
easily modify the topology and the neighbour relationship by simply modifying the values in
top. For instance, we can easily take into account that when a node is sending, it cannot receive
any message. Let nodei be the node sending in slotj. Then, by simply settingtop[i][j] = false,
nodei does not synchronise when it is sending. In a similar way, theneighbour relationship may
also be asymmetric, i.e., nodei can send a message to nodek, i.e., top[k][j] = true , but nodei
does not receive messages fromk. If nodek is transmitting in slotl, then we settop[i][l] = false.

3.1.3 First results

We formalised using temporal logic the precise meaning of being synchronised. Informally,
nodes are synchronised if they are all in the same slot when a message is sent. We modelled
different topologies and used UPPAAL to obtain the smallestvalue ofg which guarantees syn-
chronisation.

From experimental results, we derived a general formula andproved it a necessary condition
to achieve synchronisation for afully connected network, i.e., all nodes are connected to each
other. This formula gives the minimum value ofg as a function of the topology, the drift and
jitter of the clocks, and the allocation of slots. This formula shows that – for a given drift and
jitter – the minimal guard time decreases when the number of nodes increases. Intuitively, if a
node receives more messages in a frame, it synchronises alsomore often. Hence, it tolerates a
smaller guard time.

We extended our model to support topologies where nodes are not fully connected. Experi-
mental results have shown that the formula for fully connected topologies cannot be generalised
to non-fully connected ones. Our experiments also show thatthe value ofg increases when the
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number of nodes increases. Intuitively, when nodes are not fully connected, a node receives
less message in each frame. Therefore, it synchronises lessoften and the guard time must be
increased.

Despite the limited size of the networks we were able to analysed (up to 5 nodes), our models
and their analysis resulted in a better understanding of theprotocol, and more insight for us and
our industrial partner. Several meetings were held at CHESSto ensure that our models were
adequate with respect to CHESS implementation. In the future, we plan to make our model even
more realistic by adding collisions and dynamic topologies, i.e., nodes which join and leave the
network. We are also studying possible abstractions that would enable the analysis of larger
networks.

All our results are available in a recent technical report ofthe Radboud University Ni-
jmegen [8].
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3.2 RWTH Aachen

3.2.1 Participants

• Haidi Yue,

• Henrik Bohnenkamp,

• Joost-Pieter Katoen,

all RWTH Aachen University.

3.2.2 Model

We consider the gMAC protocol developed by Chess for Wireless Sensor Networks. In this
protocol, a Time Division Multiple Access(TDMA) scheduling is employed to allow multiple
sensor nodes to share the same transmission medium. Collisions happen if two or more nodes
send messages to another node at the same time. Due to the energy limitation, the number of
active slotsSA in TDMA should be chosen as small as possible. However, a smallerSA yields
greater probability of collisions.

To investigate the relation between the number of active slots, collisions, and energy con-
sumption, we model the gMAC protocol with MoDeST, a modelling language developed by
University Twente, RWTH Aachen University, and Saarland University [3]. Our means of anal-
ysis is discrete-even simulation with Motor/Möbius [2, 4].

The objective of our analysis is to gain insight into the behaviour of the gMAC protocol with
a larger number of nodes in a network. In particular, we are interested in the mechanism for col-
lision detection using piggyback information, the numbersof collisions detected and undetected,
and the influence of the number of active slots on the the energy consumption per node.

Mobility and clock drifts are currently not considered. Thenetwork is a static15 × 15 grid
with fixed neighbourhood relation, which depends on the transmission range of the nodes radio.
Every node is assumed to have the same transmission range. Weassume transmissions ranges
with at most 4 and at most 8 immediate neighbours.

In the following we will describe the key components of the MoDeST model. A node has a
unique number as identifierid, and a clockc, which measures the length of a slot and is then
reset to 0 to measure the next slot, and so forth. Furthermore, a node maintains its view as an
arrayview of booleans of length equal to the number of active slots.

Communication between nodes is modelled by means of a globalarray of buffers, where a
node accesses its buffer with indexid,buf[id]. A buffer contains two variablesis written to
andwriters (used as counting semaphores) to coordinate senders and receivers and to detect
collisions. If sending is successful, a buffer contains thepiggy-back information for collision
detection. A similar arrayenergy is used to keep track of the energy consumption.

The behaviour is modelled by using extensive data-manipulation. In particular, variables are
updated with statements in{= ... =} pairs, and a node executing a{= ... =} block
does so atomically.
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// macro SEND()
// we assume c == 0 here
when (c == guard_time) // guard_time is over

start_sending {=
energy[id] += 0.001*PL_TRANSMITTING, // add energy spent on sending
for all neighbours:

bufs[neighbour].is_written_to += 1
bufs[neighbour].writers += 1

=};
when (c == slot_length - guard_time) // end of send period

msg_sent {=
for all neighbours:

bufs[neighbour].writers -= 1,
if(bufs[neighbour].is_written_to == 1){ // != 1 means collision

// copy view array to buf
}

=};
when (c == slot_length) // end of slot

reset_channel {=
// increase slot number
c = 0,
for all neighbours:

// set everything in bufs[neighbour] to 0
=}

Figure 14: Mechanism for sending

// macro RECEIVE()
when(bufs[id].is_written_to == 1 // exactly one process wrote

&& bufs[id].writers == 0 // the one sender is done with writing to buffer
&& c >= slot_length - guard_time ) // end of send period

msg_received {=
view[slot_nr] = 1, // we received smthg in slot slot_nr

if (pigyback-information indicates collision )
// choose new send slot randomly

=}

Figure 15: Mechanism for receiving

In Figure 14 we see a sketch of the send operation as modelled in MoDeST. Before a
node actually sends in its send slot, it must wait until the guard time has passed and the send
period begins. In the send period and the time until the next slot starts, three steps are ex-
ecuted, which are marked with the three action namesstart sending, msg sent, and
reset channel. Each of these actions is accompanied by a{= =} block, where the ac-
tual work is done. Forstart sending this means to increase countersis written to and
writers in all buffers of the neighbour nodes. Then, when the send period is over, action
msg sent is executed. The node decreases in all neighbours buffers counterwriters and
checks if a collision has occurred (this is what we call areal collision). If no, the senders view
copied to the neighbours buffer. Finally, at the end of the send slot, with actionreset channel,
the neighbours buffers are cleaned up and the next slot is prepared.

In Figure 15, we see the step that are executed if a message is received by a node. This action
is executed at the end of the send period of the sending nodes,and only if the counter in the
node’s buffer is equal to 1. In that case, the piggy-backed information of the sender is checked



ICT-FP7-STREP-214755 / QUASIMODO Page 21 of 24 Public

to detect a collision. If a collision is detected (this is what we call adetected collision), a new
send-slot is chosen probabilistically.

Before a node can receive, it has to listen first. This is modelled as sketched in Figure 16.
Note the choice modelled by thealt construct:RECEIVE() stands as a placeholder for the
fragment in Figure 15. We thus have a choice between the timedguardc == slot length
and the untimed guard of theRECEIVE() process. Ifc == slot length becomes true,
nothing has been received in the slot, and the next slot is prepared.

Note that the coordination between processes is not done viasynchronising actions (the
shown actions are all hidden in the parallel composition), but only by means of shared variables.
This is necessary in order to be later able to extend the modelwith clock drifts and jitter.

The described behaviour is put together in processNode, and all the Nodes are put in a
parallel composition, as sketched in Figure 17.

// macro LISTEN()
when ( current_slot != my_send_slot ) // we are listening
listen {=

energy[id] += 0.001*PL_RECEIVING
=};
alt {
:: when(c == slot_length)

{=
view[slot_nr] = 0 // nothing received

=}
:: RECEIVE() /* as explained above */

};
when (c == slot_length)
{=
// increase slot number,
c = 0

=}

Figure 16: Listening for incoming message

3.2.3 First Results

We have conducted several simulation experiments, where weestimated, first, the effectiveness
of the collision detection mechanism, and second, a rough measure for the energy consumption
vs. the number of active slots.

In Figures 18 we see the evolution of the number of collisions(y-axis) for the current frame
(x-axis). Figure 18(a) shows the case for 4 neighbours within the transmission range, and Fig-
ure 18(b) the case for 8 neighbours. The graphs show that the number of active slots does influ-
ence the number of collisions enormously, but that very manyactive slots are needed (compared
to the number of neighbours) before the number of collisionsactually tends to go to 0. In the
case of 8 neighbours, this is the case from 23 active slots upwards (not shown in the graph).

In Figures 19, we see the total energy of a node with 4 neighbours that is needed to transmit
50000/100000 messages successfully. Although a larger number of active slots speeds up the
process (fewer frames are needed), also the energy consumption increases. The optimum seems
to be 4 active slots for the 4-neighbour case, and 7 active slots for the 8-neighbour case.
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process Node(int id) {
// initialisations
do { // repeat for each slot
:: when (slot_nr > activeslots) ... // idle until frame ends
:: SEND()...
:: LISTEN()...

}
}

par{
:: hide all actions in (Node(1))
:: hide all actions in (Node(2))
...

}

Figure 17: Rough structure of processNode and parallel composition

(a) 4 Neighbours (b) 8 Neighbours

Figure 18: Collisions, real and detected
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(a) 4 Neighbours (b) 8 Neighbours

Figure 19: Energy consumption

In the future we plan to extend the model and the analysis in several directions.

• Developing different criteria on which to base the assessments of energy efficiency;

• considering mobility;

• considering clock drifts;

• finding analytical explanations for simulation results.
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